

Suffolk Bennett's Creek Rec Ctr.

Specifications Volume 2 of 2

Commission Number: 215021

December 18, 2019

Suffolk Bennett's Creek Rec Ctr.

Specifications Volume 2 of 2

Commission Number: 215021

December 18, 2019

Contact: Randy Vaughan AIA Senior Architect 434.947-1602 .direct 434.947.1659 .fax rvaughan@wileywilson.com

Division	Section Title	Pages
VOLUME 1:		
DIVISION 01	- GENERAL REQUIREMENTS	
011000	SUMMARY	3
	ALTERNATES	2
012600		2
012900	PAYMENT PROCEDURES	4
013300	SUBMITTAL PROCEDURES	8
014000		6
014200	REFERENCES	18
015000	TEMPORARY FACILITIES AND CONTROLS	11
017700	CLOSEOUT PROCEDURES	5
017823	OPERATION AND MAINTENANCE DATA	7
017839	PROJECT RECORD DOCUMENTS	2
017900	DEMONSTRATION AND TRAINING	4
019113	GENERAL COMMISSIONING REQUIREMENTS	3
DIVISION 02	- EXISTING CONDITIONS	
024119	SELECTIVE DEMOLITION	8
DIVISION 03	- CONCRETE	
	CAST-IN-PLACE CONCRETE	9
DIVISION 05	- METALS	
051200		9
	STEEL DECKING	7
	COLD-FORMED METAL FRAMING	9
	METAL FABRICATIONS	10
DIVISION 06	- WOOD, PLASTICS, AND COMPOSITES	
	MISCELLANEOUS ROUGH CARPENTRY	8
	SHEATHING	
	PLASTIC-LAMINATE-FACED ARCHITECTURAL CABINETS	9
DIVISION 07	- THERMAL AND MOISTURE PROTECTION	
071113	BITUMINOUS DAMPPROOFING	4
072100	THERMAL INSULATION	5
072419	WATER-DRAINAGE EXTERIOR INSULATION AND FINISH SYSTEM (EIFS)	12
072500	WEATHER BARRIERS	2
072726	FLUID-APPLIED MEMBRANE AIR BARRIERS	8
074113.16	STANDING-SEAM METAL ROOF PANELS	12
075700	COATED FOAMED ROOFING	10
076200	SHEET METAL FLASHING AND TRIM	14
078413	PENETRATION FIRESTOPPING	7
	JOINT FIRESTOPPING	5

TABLE OF CONTENTS

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION

215021.00

079200	JOINT SEALANTS	11
079513.13	INTERIOR EXPANSION JOINT COVER ASSEMBLIES	(
079513.16	EXTERIOR EXPANSION JOINT COVER ASSEMBLIES	4
	3 - OPENINGS	
081113	HOLLOW METAL DOORS AND FRAMES	8
081416	FLUSH WOOD DOORS	7
083113	ACCESS DOORS AND FRAMES	4
083313	COILING COUNTER DOORS	7
084113	ALUMINUM-FRAMED ENTRANCES AND STOREFRONTS	15
087111	DOOR HARDWARE (DESCRIPTIVE SPECIFICATION)	34
087113	AUTOMATIC DOOR OPERATORS	8
088000	GLAZING	13
088300	MIRRORS	6
089119	FIXED LOUVERS	7
DIVISION 09	- FINISHES	
092216	NON-STRUCTURAL METAL FRAMING	8
092900	GYPSUM BOARD	8
093013	CERAMIC TILING	15
095113	ACOUSTICAL PANEL CEILINGS	8
096229	CORK FLOORING	4
096513	RESILIENT BASE AND ACCESSORIES	4
096519	RESILIENT TILE FLOORING	(
096566	RESILIENT ATHLETIC FLOORING	6
098433	SOUND-ABSORBING WALL UNITS	۷
099113	EXTERIOR PAINTING	(
099123	INTERIOR PAINTING	8
	- SPECIALTIES	
	ROOM-IDENTIFICATION SIGNAGE	7
102113.19	PLASTIC TOILET COMPARTMENTS	6
	WALL AND DOOR PROTECTION	4
	TOILET, BATH, AND LAUNDRY ACCESSORIES	10
104413	FIRE PROTECTION CABINETS	4
104416	FIRE EXTINGUISHERS	3
105113	METAL LOCKERS	
DIVISION 11	- EQUIPMENT	
114000	FOODSERVICE EQUIPMENT	Ç
	PROJECTION SCREENS	4
	- FURNISHINGS	
	HORIZONTAL LOUVER BLINDS	4
124813	ENTRANCE FLOOR MATS AND FRAMES	4

VOLUME 2:

DIVISION 21	- FIRE SUPPRESSION
210517	SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING
210518	ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING
211313	WET-PIPE SPRINKLER SYSTEMS
DIVISION 22	- PLUMBING
220513	COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT
220517	SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING
220518	ESCUTCHEONS FOR PLUMBING PIPING
220519	METERS AND GAGES FOR PLUMBING PIPING
220523.12	BALL VALVES FOR PLUMBING PIPING
220523.14	CHECK VALVES FOR PLUMBING PIPING
220529	HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT
220553	IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT
220719	PLUMBING PIPING INSULATION
221116	DOMESTIC WATER PIPING
221119	DOMESTIC WATER PIPING SPECIALTIES
221123	DOMESTIC WATER PUMPS
221123.13	DOMESTIC-WATER PACKAGED BOOSTER PUMPS
221316	SANITARY WASTE AND VENT PIPING
221319	SANITARY WASTE PIPING SPECIALTIES
221319.13	SANITARY DRAINS
221413	FACILITY STORM DRAINAGE PIPING
221423	STORM DRAINAGE PIPING SPECIALTIES
223400	FUEL-FIRED, DOMESTIC-WATER HEATERS
224213.13	COMMERCIAL WATER CLOSETS
224213.16	COMMERCIAL URINALS
224216.13	COMMERCIAL LAVATORIES
224216.16	COMMERCIAL SINKS
224223	COMMERCIAL SHOWERS
224716	PRESSURE WATER COOLERS
DIVISION 23	- HEATING, VENTILATING, AND AIR CONDITIONING (HVAC)
230513	COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT
230517	SLEEVES AND SLEEVE SEALS FOR HVAC PIPING
230518	ESCUTCHEONS FOR HVAC PIPING
230529	HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT
230553	IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT
230593	TESTING, ADJUSTING, AND BALANCING FOR HVAC
230713	DUCT INSULATION
230719	HVAC PIPING INSULATION
230800	COMMISSIONING OF HVAC
230923	DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC
231123	FACILITY NATURAL-GAS PIPING
233113	METAL DUCTS

TABLE OF CONTENTS

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION

215021.00

233300	AIR DUCT ACCESSORIES
233346	FLEXIBLE DUCTS
233423	HVAC POWER VENTILATORS
233533	LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS
233713.13	AIR DIFFUSERS
233713.23	AIR REGISTERS AND GRILLES
233716	FABRIC AIR-DISTRIBUTION DEVICES
233813	COMMERCIAL-KITCHEN HOODS
237416.11	PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS
237423.13	PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS.
237433	DEDICATED OUTDOOR-AIR UNITS
238129	VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS
238239.13	CABINET UNIT HEATERS
238239.16	PROPELLER UNIT HEATERS
DIVISION 26	- ELECTRICAL
	LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES
260526	GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS
260529	HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS
260533	RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS
260543	UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS
260553	IDENTIFICATION FOR ELECTRICAL SYSTEMS
260923	LIGHTING CONTROL DEVICES
262213	LOW-VOLTAGE DISTRIBUTION TRANSFORMERS
262416	PANELBOARDS
262726	WIRING DEVICES
262816	ENCLOSED SWITCHES AND CIRCUIT BREAKERS
265119	LED INTERIOR LIGHTING
DIVISION 28	- ELECTRONIC SAFETY AND SECURITY
284621.11	ADDRESSABLE FIRE-ALARM SYSTEMS
DIVISION 31	- EARTHWORK
311000	SITE CLEARING.
312000	EARTH MOVING
316329	DRILLED CONCRETE PIERS AND SHAFTS
DIVISION 32	- EXTERIOR IMPROVEMENTS
320190	OPERATIONS AND MAINTENANCE OF PLANTING
321216	ASPHALT PAVING
329000	BURMUDAGRASS LAWN PLANTING
329219	SEEDING
329300	PLANTS
DIVISION 33	- UTILITIES
334100	
END OF TABLE	E OF CONTENTS

TABLE OF CONTENTS

SECTION 210517 - SLEEVES AND SLEEVE SEALS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.3 SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

- A. Cast-Iron Wall Pipes: Cast or fabricated of cast or ductile iron and equivalent to ductile-iron pressure pipe, with plain ends and integral waterstop unless otherwise indicated.
- B. Galvanized-Steel-Pipe Sleeves: ASTM A 53, Type E, Grade B, Schedule 40, zinc coated, with plain ends.
- C. Galvanized-Steel-Sheet Sleeves: 0.0239-inch minimum thickness; round tube closed with welded longitudinal joint.

2.2 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Advance Products & Systems, Inc.
 - 2. Metraflex Company (The).
 - 3. Pipeline Seal and Insulator, Inc.
 - 4. Proco Products, Inc.

- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs.
- C. Install sleeves in masonry walls as new walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Using grout, seal the space outside of sleeves in masonry walls.
- D. Install sleeves for pipes passing through interior partitions and exterior walls above grade.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe.
 - 3. Seal annular space between sleeve and piping; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Division 07 Section "Joint Sealants."
- E. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, and ceilings at pipe penetrations. Seal pipe penetrations with firestop materials.

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Walls above Grade:
 - a. All Pipe Sizes: Cast-iron wall sleeves.
 - 2. Concrete Slabs-on-Grade:
 - a. All Pipe Sizes: Cast-iron wall sleeves with sleeve-seal system.
 - 1) Select sleeve size to allow for 1-inch annular clear space between piping and sleeve for installing sleeve-seal system.
 - 3. Interior Partitions and Masonry Walls:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
 - b. Piping NPS 6 and Larger: Galvanized-steel-sheet sleeves or galvanized-steel-pipe sleeves.

END OF SECTION 210517

SECTION 210518 - ESCUTCHEONS FOR FIRE-SUPPRESSION PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of finished walls and ceilings.
- B. Install escutcheons with ID to closely fit around pipe and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Bare Piping at Wall Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.
 - c. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, cast-brass or split-casting brass type with polished, chrome-plated finish.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 210518

SECTION 211313 - WET-PIPE SPRINKLER SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipes, fittings, and specialties.
- 2. Fire-protection valves.
- 3. Fire-department connections.
- 4. Sprinklers.
- 5. Alarm devices.
- 6. Manual control stations.
- 7. Control panels.
- 8. Pressure gauges.

1.3 DEFINITIONS

A. Standard-Pressure Sprinkler Piping: Wet-pipe sprinkler system piping designed to operate at working pressure of 175 psig maximum.

1.4 SYSTEM DESCRIPTIONS

A. Wet-Pipe Sprinkler System: Automatic sprinklers are attached to piping containing water and that is connected to water supply through alarm valve. Water discharges immediately from sprinklers when they are opened. Sprinklers open when heat melts fusible link or destroys frangible device. Hose connections are included if indicated.

1.5 PERFORMANCE REQUIREMENTS

- A. Standard-Pressure Piping System Component: Listed for 175-psig minimum working pressure.
- B. Delegated Design: Design sprinkler system(s), including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated.

- 1. Modeled capacity curves, based on the City's water model indicate the 8" water main near the project site can supply 1,500 gpm at 20 psi residual pressure, which is the maximum allowable flow to be considered for design. The static pressure is 57 psi.
- C. Sprinkler system design shall be approved by authorities having jurisdiction.
 - 1. Margin of Safety for Available Water Flow and Pressure: 10 percent, including losses through water-service piping, valves, and backflow preventers.
 - 2. Sprinkler Occupancy Hazard Classifications: As indicated on the Drawings.
 - 3. Minimum Density for Automatic-Sprinkler Piping Design: As indicated on the Drawings.
 - 4. Maximum Protection Area per Sprinkler: Per UL listing.
 - 5. Total Combined Hose-Stream Demand Requirement: According to NFPA 13 unless otherwise indicated:
 - a. Light-Hazard Occupancies: 100 GPM for 30 minutes.
 - b. Ordinary-Hazard Occupancies: 250 GPM for 60 to 90 minutes.
- D. Seismic Performance: Sprinkler piping shall withstand the effects of earthquake motions determined according to NFPA 13 and ASCE/SEI 7. Refer to Structural drawing S-001 for Seismic Requirements.

1.6 SUBMITTALS

- A. Product Data: For each type of product indicated, include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: For wet-pipe sprinkler systems. Include plans, elevations, sections, details, and attachments to other work.
 - 1. Wiring Diagrams: For power, signal, and control wiring.
- C. Delegated-Design Submittal: For sprinkler systems indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
- D. Coordination Drawings: Sprinkler systems, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Domestic water piping.
 - 2. HVAC ductwork.
 - 3. Items penetrating finished ceiling include the following:
 - a. Lighting fixtures.
 - b. Air outlets and inlets.
- E. Qualification Data: For qualified installer.
- F. Approved Sprinkler Piping Drawings: Working plans, prepared according to NFPA 13, that have been approved by authorities having jurisdiction, including hydraulic calculations.

- G. Welding certificates.
- H. Fire-hydrant flow test report.
- I. Field Test Reports and Certificates: Indicate and interpret test results for compliance with performance requirements and as described in NFPA 13. Include "Contractor's Material and Test Certificate for Aboveground Piping."
- J. Field quality-control reports.
- K. Operation and Maintenance Data: For sprinkler specialties to include in emergency, operation, and maintenance manuals.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications:
 - 1. Installer's responsibilities include designing, fabricating, and installing sprinkler systems and providing professional engineering services needed to assume engineering responsibility. Base calculations on results of fire-hydrant flow test.
 - a. Engineering Responsibility: Preparation of working plans, calculations, and field test reports by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- D. NFPA Standards: Sprinkler system equipment, specialties, accessories, installation, and testing shall comply with the following:
 - 1. NFPA 13, "Installation of Sprinkler Systems."
 - 2. NFPA 24, "Installation of Private Fire Service Mains and Their Appurtenances."

1.8 COORDINATION

A. Coordinate layout and installation of sprinklers with other construction that penetrates ceilings, including light fixtures, HVAC equipment, and partition assemblies.

1.9 EXTRA MATERIALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Sprinkler Cabinets: Finished, wall-mounted, steel cabinet with hinged cover, and with space for minimum of six spare sprinklers plus sprinkler wrench. Include number of

sprinklers required by NFPA 13 and sprinkler wrench. Include separate cabinet with sprinklers and wrench for each type of sprinkler used on Project.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, and fitting materials, and for joining methods for specific services, service locations, and pipe sizes.

2.2 STEEL PIPE AND FITTINGS

- A. Standard Weight, Galvanized-and Black-Steel Pipe: ASTM A 53/A 53M Type E, Grade B. Pipe ends may be factory or field formed to match joining method.
- B. Black-Steel Pipe Nipples: ASTM A 733, made of ASTM A 53/A 53M, standard-weight, seamless steel pipe with threaded ends.
- C. Galvanized and Uncoated, Steel Couplings: ASTM A 865, threaded.
- D. Galvanized and Uncoated, Gray-Iron Threaded Fittings: ASME B16.4, Class 125, standard pattern.
- E. Malleable- or Ductile-Iron Unions: UL 860.
- F. Cast-Iron Flanges: ASME 16.1, Class 125.
- G. Steel Flanges and Flanged Fittings: ASME B16.5, Class 150.
- H. Steel Welding Fittings: ASTM A 234/A 234M and ASME B16.9.
- I. Grooved-Joint, Steel-Pipe Appurtenances:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - 2. Pressure Rating: 175 psig minimum.
 - 3. Galvanized and Uncoated, Grooved-End Fittings for Steel Piping: ASTM A 47, malleable-iron casting or ASTM A 536, ductile-iron casting; with dimensions matching steel pipe.
 - 4. Grooved-End-Pipe Couplings for Steel Piping: AWWA C606 and UL 213, rigid pattern, unless otherwise indicated, for steel-pipe dimensions. Include ferrous housing sections, EPDM-rubber gasket, and bolts and nuts.

2.3 PIPING JOINING MATERIALS

- A. Pipe-Flange Gasket Materials: AWWA C110, rubber, flat face, 1/8 inch thick or ASME B16.21, nonmetallic and asbestos free.
 - 1. Class 125, Cast-Iron Flanges: Full-face gaskets.
 - 2. Class 250, Cast-Iron Flanges and Class 300, Steel Raised-Face Flanges: Ring-type gaskets.
- B. Metal, Pipe-Flange Bolts and Nuts: ASME B18.2.1, carbon steel unless otherwise indicated.
- C. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 LISTED FIRE-PROTECTION VALVES

A. General Requirements:

- 1. Valves shall be UL listed or FM approved.
- 2. Minimum Pressure Rating for Standard-Pressure Piping: 175 psig.

B. Ball Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Victaulic Company.
- 2. Standard: UL 1091 except with ball instead of disc.
- 3. Valves NPS 1-1/2 and Smaller: Bronze body with threaded ends.
- 4. Valves NPS 2 and NPS 2-1/2: Bronze body with threaded ends or ductile-iron body with grooved ends.
- 5. Valves NPS 3: Ductile-iron body with grooved ends.

C. Bronze Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Global Safety Products, Inc.
 - b. Milwaukee Valve Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

D. Iron Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Global Safety Products, Inc.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Tyco Fire & Building Products LP.
 - f. Victaulic Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Cast or ductile iron.
- 5. Style: Lug or wafer.
- 6. End Connections: Grooved.

E. Check Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Globe Fire Sprinkler Corporation.
 - f. Milwaukee Valve Company.
 - g. NIBCO INC.
 - h. Reliable Automatic Sprinkler Co., Inc.
 - i. Tyco Fire & Building Products LP.
 - j. Victaulic Company.
 - k. Viking Corporation.
- 2. Standard: UL 312.
- 3. Pressure Rating: 250 psig minimum.
- 4. Type: Swing check.
- 5. Body Material: Cast iron.
- 6. End Connections: Flanged or grooved.

F. Bronze OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Crane Co.; Crane Valve Group; Crane Valves.
 - b. Crane Co.; Crane Valve Group; Stockham Division.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.

- 2. Standard: UL 262.
- 3. Pressure Rating: 175 psig.
- 4. Body Material: Bronze.
- 5. End Connections: Threaded.

G. Iron OS&Y Gate Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Clow Valve Company; a division of McWane, Inc.
 - b. Crane Co.; Crane Valve Group; Crane Valves.
 - c. Crane Co.; Crane Valve Group; Jenkins Valves.
 - d. Crane Co.; Crane Valve Group; Stockham Division.
 - e. Milwaukee Valve Company.
 - f. Mueller Co.; Water Products Division.
 - g. NIBCO INC.
- 2. Standard: UL 262.
- 3. Pressure Rating: 250 psig minimum.
- 4. Body Material: Cast or ductile iron.
- 5. End Connections: Flanged or grooved.

H. Indicating-Type Butterfly Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Global Safety Products, Inc.
 - c. Milwaukee Valve Company.
 - d. NIBCO INC.
 - e. Tyco Fire & Building Products LP.
 - f. Victaulic Company.
- 2. Standard: UL 1091.
- 3. Pressure Rating: 175 psig minimum.
- 4. Valves NPS 2 and Smaller:
 - a. Valve Type: Ball or butterfly.
 - b. Body Material: Bronze.
 - c. End Connections: Threaded.
- 5. Valves NPS 2-1/2 and Larger:
 - a. Valve Type: Butterfly.
 - b. Body Material: Cast or ductile iron.
 - c. End Connections: Flanged, grooved, or wafer.

6. Valve Operation: Integral electrical, 115-V ac, prewired, two-circuit, supervisory switch and visual indicating device.

2.5 TRIM AND DRAIN VALVES

A. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating: 175 psig minimum.

2.6 SPECIALTY VALVES

A. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating:
 - a. Standard-Pressure Piping Specialty Valves: 175 psig minimum.
- 3. Body Material: Cast or ductile iron.
- 4. Size: Same as connected piping.
- 5. End Connections: Flanged or grooved.

B. Alarm Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 193.
- 3. Design: For horizontal or vertical installation.
- 4. Include trim sets for bypass, drain, electrical sprinkler alarm switch, pressure gauges, retarding chamber, and fill-line attachment with strainer.
- 5. Drip cup Assembly: Pipe drain with check valve to main drain piping or pipe drain without valves and separate from main drain piping.

C. Automatic (Ball Drip) Drain Valves:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.

- 2. Standard: UL 1726.
- 3. Pressure Rating: 175 psig minimum.
- 4. Type: Automatic draining, ball check.
- 5. Size: NPS 3/4.
- 6. End Connections: Threaded.

2.7 FIRE-DEPARTMENT CONNECTIONS

A. Flush-Type, Fire-Department Connection:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Elkhart Brass Mfg. Company, Inc.
 - b. Guardian Fire Equipment, Inc.
 - c. Potter Roemer.
- 2. Standard: UL 405.
- 3. Type: Flush, for wall mounting.
- 4. Pressure Rating: 175 psig minimum.
- 5. Body Material: Corrosion-resistant metal.
- 6. Inlets: Brass with threads according to NFPA 1963 and matching local fire-department sizes and threads. Include extension pipe nipples, brass lugged swivel connections, and check devices or clappers.
- 7. Caps: Brass, lugged type, with gasket and chain.
- 8. Escutcheon Plate: Rectangular, brass, wall type.
- 9. Outlet: With pipe threads.
- 10. Body Style: Horizontal.
- 11. Number of Inlets: Two.
- 12. Outlet Location: Back.
- 13. Escutcheon Plate Marking: Similar to "AUTO SPKR."
- 14. Finish: Rough brass or bronze.
- 15. Outlet Size: NPS 4.

2.8 SPRINKLER SPECIALTY PIPE FITTINGS

A. Branch Outlet Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Anvil International, Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
- 2. Standard: UL 213.
- 3. Pressure Rating: 175 psig minimum.
- 4. Body Material: Ductile-iron housing with EPDM seals and bolts and nuts.

- 5. Type: Mechanical-T and -cross fittings.
- 6. Configurations: Snap-on and strapless, ductile-iron housing with branch outlets.
- 7. Size: Of dimension to fit onto sprinkler main and with outlet connections as required to match connected branch piping.
- 8. Branch Outlets: Grooved, plain-end pipe, or threaded.

B. Flow Detection and Test Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
- 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 3. Pressure Rating: 175 psig minimum.
- 4. Body Material: Cast- or ductile-iron housing with orifice, sight glass, and integral test valve.
- 5. Size: Same as connected piping.
- 6. Inlet and Outlet: Threaded.

C. Sprinkler Inspector's Test Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Tyco Fire & Building Products LP.
 - b. Victaulic Company.
 - c. Viking Corporation.
- 2. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 3. Pressure Rating: 175 psig minimum.
- 4. Body Material: Cast- or ductile-iron housing with sight glass.
- 5. Size: Same as connected piping.
- 6. Inlet and Outlet: Threaded.

2.9 SPRINKLERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Reliable Automatic Sprinkler Co., Inc.
 - 2. Tyco Fire & Building Products LP.
 - 3. Victaulic Company.
 - 4. Viking Corporation.

B. General Requirements:

- 1. Standard: UL's "Fire Protection Equipment Directory" listing or "Approval Guide," published by FM Global, listing.
- 2. Pressure Rating for Automatic Sprinklers: 175 psig minimum.
- C. Automatic Sprinklers with Heat-Responsive Element:
 - 1. Nonresidential Applications: UL 199.
 - 2. Characteristics: Nominal 1/2-inch orifice with Discharge Coefficient K of 5.6, and for "Ordinary" temperature classification rating unless otherwise indicated or required by application.

D. Sprinkler Finishes:

- 1. Chrome plated.
- 2. Bronze.
- E. Sprinkler Escutcheons: Materials, types, and finishes for the following sprinkler mounting applications. Escutcheons for concealed, flush, and recessed-type sprinklers are specified with sprinklers.
 - 1. Ceiling Mounting: Chrome-plated steel, two piece, with 1/2-inch vertical adjustment.
 - 2. Sidewall Mounting: Chrome-plated steel, one piece, flat.

F. Sprinkler Guards:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.
 - c. Victaulic Company.
 - d. Viking Corporation.
- 2. Standard: UL 199.
- 3. Type: Wire cage with fastening device for attaching to sprinkler.

2.10 ALARM DEVICES

- A. Alarm-device types shall match piping and equipment connections.
- B. Water-Motor-Operated Alarm:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Reliable Automatic Sprinkler Co., Inc.
 - b. Tyco Fire & Building Products LP.

- c. Victaulic Company.
- d. Viking Corporation.
- 2. Standard: UL 753.
- 3. Type: Mechanically operated, with Pelton wheel.
- 4. Alarm Gong: Cast aluminum with red-enamel factory finish.
- 5. Size: 10-inch diameter.
- 6. Components: Shaft length, bearings, and sleeve to suit wall construction.
- 7. Inlet: NPS 3/4.
- 8. Outlet: NPS 1 drain connection.

C. Water-Flow Indicators:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. McDonnell & Miller; ITT Industries.
 - b. Potter Electric Signal Company.
 - c. System Sensor; a Honeywell company.
 - d. Viking Corporation.
- 2. Standard: UL 346.
- 3. Water-Flow Detector: Electrically supervised.
- 4. Components: Two single-pole, double-throw circuit switches for isolated alarm and auxiliary contacts, 7 A, 125-V ac and 0.25 A, 24-V dc; complete with factory-set, field-adjustable retard element to prevent false signals and tamperproof cover that sends signal if removed.
- 5. Type: Paddle operated.
- 6. Pressure Rating: 250 psig.
- 7. Design Installation: Horizontal or vertical.

D. Valve Supervisory Switches:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Fire-Lite Alarms, Inc.; a Honeywell company.
 - b. Kennedy Valve; a division of McWane, Inc.
 - c. Potter Electric Signal Company.
 - d. System Sensor; a Honeywell company.
- 2. Standard: UL 346.
- 3. Type: Electrically supervised.
- 4. Components: Single-pole, double-throw switch with normally closed contacts.
- 5. Design: Signals that controlled valve is in other than fully open position.

2.11 PRESSURE GAUGES

A. Standard: UL 393.

- B. Dial Size: 3-1/2- to 4-1/2-inch diameter.
- C. Pressure Gauge Range: 0 to 250 psig minimum.
- D. Water System Piping Gauge: Include "WATER" or "AIR/WATER" label on dial face.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Perform fire-hydrant flow test according to NFPA 13 and NFPA 291. Use results for system design calculations required in "Quality Assurance" Article.
- B. Report test results promptly and in writing.

3.2 SERVICE-ENTRANCE PIPING

- A. Connect sprinkler piping to water-service piping for service entrance to building. Comply with requirements for exterior piping.
- B. Install shutoff valve, backflow preventer, pressure gauge, drain, and other accessories indicated at connection to water-service piping. Comply with requirements for backflow preventers.

3.3 PIPING INSTALLATION

- A. Locations and Arrangements: Drawing plans, schematics, and diagrams indicate general location and arrangement of piping. Install piping as indicated, as far as practical.
 - 1. Deviations from approved working plans for piping require written approval from authorities having jurisdiction. File written approval with Architect before deviating from approved working plans.
- B. Piping Standard: Comply with requirements for installation of sprinkler piping in NFPA 13.
- C. Use listed fittings to make changes in direction, branch takeoffs from mains, and reductions in pipe sizes.
- D. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- E. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- F. Install "Inspector's Test Connections" in sprinkler system piping, complete with shutoff valve, and sized and located according to NFPA 13.
- G. Install sprinkler piping with drains for complete system drainage.

- H. Install automatic (ball drip) drain valve at each check valve for fire-department connection, to drain piping between fire-department connection and check valve. Install drain piping to and spill over floor drain.
- I. Install alarm devices in piping systems.
- J. Install hangers and supports for sprinkler system piping according to NFPA 13. Comply with requirements for hanger materials in NFPA 13.
- K. Install pressure gauges on riser or feed main, at each sprinkler test connection. Include pressure gauges with connection not less than NPS 1/4 and with soft metal seated globe valve, arranged for draining pipe between gauge and valve. Install gauges to permit removal, and install where they will not be subject to freezing.
- L. Fill sprinkler system piping with water.
- M. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- N. Install sleeve seals for piping penetrations of concrete slabs. Comply with requirements for sleeve seals specified in Division 21 Section "Sleeves and Sleeve Seals for Fire-Suppression Piping."
- O. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Division 21 Section "Escutcheons for Fire-Suppression Piping."

3.4 JOINT CONSTRUCTION

- A. Install couplings, flanges, flanged fittings, unions, nipples, and transition and special fittings that have finish and pressure ratings same as or higher than system's pressure rating for aboveground applications unless otherwise indicated.
- B. Install unions adjacent to each valve in pipes NPS 2 and smaller.
- C. Install flanges, flange adapters, or couplings for grooved-end piping on valves, apparatus, and equipment having NPS 2-1/2 and larger end connections.
- D. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- E. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- F. Flanged Joints: Select appropriate gasket material in size, type, and thickness suitable for water service. Join flanges with gasket and bolts according to ASME B31.9.

- G. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- H. Welded Joints: Construct joints according to AWS D10.12M/D10.12, using qualified processes and welding operators according to "Quality Assurance" Article.
 - 1. Shop weld pipe joints where welded piping is indicated. Do not use welded joints for galvanized-steel pipe.
- I. Steel-Piping, Cut-Grooved Joints: Cut square-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe joints.
- J. Steel-Piping, Roll-Grooved Joints: Roll rounded-edge groove in end of pipe according to AWWA C606. Assemble coupling with housing, gasket, lubricant, and bolts. Join steel pipe and grooved-end fittings according to AWWA C606 for steel-pipe grooved joints.
- K. Dissimilar-Material Piping Joints: Make joints using adapters compatible with materials of both piping systems.

3.5 VALVE AND SPECIALTIES INSTALLATION

- A. Install listed fire-protection valves, trim and drain valves, specialty valves and trim, controls, and specialties according to NFPA 13 and authorities having jurisdiction.
- B. Install listed fire-protection shutoff valves supervised open, located to control sources of water supply except from fire-department connections. Install permanent identification signs indicating portion of system controlled by each valve.
- C. Specialty Valves:
 - 1. General Requirements: Install in vertical position for proper direction of flow, in main supply to system.
 - 2. Alarm Valves: Include bypass check valve and retarding chamber drain-line connection.

3.6 SPRINKLER INSTALLATION

A. Install sprinklers in suspended ceilings in center of acoustical ceiling panels.

3.7 FIRE-DEPARTMENT CONNECTION INSTALLATION

A. Install wall-type, fire-department connections.

B. Install automatic (ball drip) drain valve at each check valve for fire-department connection.

3.8 IDENTIFICATION

- A. Install labeling and pipe markers on equipment and piping according to requirements in NFPA 13.
- B. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Division 26 Section "Identification for Electrical Systems."

3.9 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Leak Test: After installation, charge systems and test for leaks. Repair leaks and retest until no leaks exist.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Flush, test, and inspect sprinkler systems according to NFPA 13, "Systems Acceptance" Chapter.
 - 4. Energize circuits to electrical equipment and devices.
 - 5. Coordinate with fire-alarm tests. Operate as required.
 - 6. Verify that equipment hose threads are same as local fire-department equipment.
- C. Sprinkler piping system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.10 CLEANING

- A. Clean dirt and debris from sprinklers.
- B. Remove and replace sprinklers with paint other than factory finish.

3.11 DEMONSTRATION

A. Train owner's maintenance personnel to adjust, operate, and maintain specialty valves.

3.12 PIPING SCHEDULE

A. Piping between Fire-Department Connections and Check Valves: Galvanized, standard-weight steel pipe with grooved ends; grooved-end fittings; grooved-end-pipe couplings; and grooved joints.

- B. Sprinkler specialty fittings may be used, downstream of control valves, instead of specified fittings.
- C. Standard-pressure, wet-pipe sprinkler system, NPS 2 and smaller, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
- D. Standard-pressure, wet-pipe sprinkler system, NPS 2-1/2 to NPS 4, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with threaded ends; uncoated, gray-iron threaded fittings; and threaded joints.
 - 2. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 3. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.
- E. Standard-pressure, wet-pipe sprinkler system, NPS 5 and larger, shall be one of the following:
 - 1. Standard-weight, black-steel pipe with cut- or roll-grooved ends; uncoated, grooved-end fittings for steel piping; grooved-end-pipe couplings for steel piping; and grooved joints.
 - 2. Standard-weight, black-steel pipe with plain ends; steel welding fittings; and welded joints.

3.13 SPRINKLER SCHEDULE

- A. Use sprinkler types in subparagraphs below for the following applications:
 - 1. Rooms without Ceilings: Upright sprinklers.
 - 2. Rooms with Suspended Ceilings: Pendent sprinklers.
 - 3. Wall Mounting: Sidewall sprinklers.
- B. Provide sprinkler types in subparagraphs below with finishes indicated.
 - 1. Upright, Pendent and Sidewall Sprinklers: Chrome plated in finished spaces exposed to view; rough bronze in unfinished spaces not exposed to view.

END OF SECTION 211313

SECTION 220513 - COMMON MOTOR REQUIREMENTS FOR PLUMBING EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

END OF SECTION 220513

SECTION 220517 - SLEEVES AND SLEEVE SEALS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Sleeve-seal systems.
 - 3. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVE-SEAL SYSTEMS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Advance Products & Systems, Inc.
 - 2. CALPICO, Inc.
 - 3. Metraflex Company (The).
 - 4. Pipeline Seal and Insulator, Inc.
 - 5. Proco Products, Inc.
- B. Description: Modular sealing-element unit, designed for field assembly, for filling annular space between piping and sleeve.
 - 1. Sealing Elements: EPDM-rubber interlocking links shaped to fit surface of pipe. Include type and number required for pipe material and size of pipe.
 - 2. Pressure Plates: Stainless steel.
 - 3. Connecting Bolts and Nuts: Stainless steel of length required to secure pressure plates to sealing elements.

2.2 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Permanent sleeves are not required for holes in slabs formed by molded-PE or -PP sleeves.
 - 2. Cut sleeves to length for mounting flush with both surfaces.
 - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level.
 - 3. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.

B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

END OF SECTION 220517

SECTION 220518 - ESCUTCHEONS FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Cast-Brass Type: With polished, chrome-plated finish and setscrew fastener.
- B. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of insulated piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:
 - a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
 - b. Chrome-Plated Piping: One-piece, cast-brass type with polished, chrome-plated finish.

c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, cast-brass type with polished, chrome-plated finish.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

END OF SECTION 220518

SECTION 220519 - METERS AND GAGES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Liquid-in-glass thermometers.
 - 2. Thermowells.
 - 3. Dial-type pressure gages.
 - 4. Gage attachments.
 - 5. Test plugs.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Product Certificates: For each type of meter and gage.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For meters and gages to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 LIQUID-IN-GLASS THERMOMETERS

- A. Metal-Case, Industrial-Style, Liquid-in-Glass Thermometers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Trerice, H. O. Co.
- b. Weiss Instruments, Inc.
- c. Weksler Glass Thermometer Corp.
- 2. Standard: ASME B40.200.
- 3. Case: Cast aluminum: 7-inchnominal size unless otherwise indicated.
- 4. Case Form: Adjustable angle unless otherwise indicated.
- 5. Tube: Glass with magnifying lens and blue or red organic liquid.
- 6. Tube Background: Nonreflective aluminum with permanently etched scale markings graduated in deg F).
- 7. Window: Glass.
- 8. Stem: Aluminum and of length to suit installation.
 - a. Design for Thermowell Installation: Bare stem.
- 9. Connector: 1-1/4 inches, with ASME B1.1 screw threads.
- 10. Accuracy: Plus or minus 1 percent of scale range or one scale division, to a maximum of 1.5 percent of scale range.

2.2 THERMOWELLS

A. Thermowells:

- 1. Standard: ASME B40.200.
- 2. Description: Pressure-tight, socket-type fitting made for insertion into piping tee fitting.
- 3. Material for Use with Copper Tubing: CNR or CUNI.
- 4. Material for Use with Steel Piping: CRES.
- 5. Type: Stepped shank unless straight or tapered shank is indicated.
- 6. External Threads: NPS 1/2, NPS 3/4, or NPS 1, ASME B1.20.1 pipe threads.
- 7. Internal Threads: 1/2, 3/4, and 1 inch, with ASME B1.1 screw threads.
- 8. Bore: Diameter required to match thermometer bulb or stem.
- 9. Insertion Length: Length required to match thermometer bulb or stem.
- 10. Lagging Extension: Include on thermowells for insulated piping and tubing.
- 11. Bushings: For converting size of thermowell's internal screw thread to size of thermometer connection.
- B. Heat-Transfer Medium: Mixture of graphite and glycerin.

2.3 PRESSURE GAGES

- A. Direct-Mounted, Metal-Case, Dial-Type Pressure Gages:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Trerice, H. O. Co.
 - b. Weiss Instruments, Inc.

- c. Weksler Glass Thermometer Corp.
- 2. Standard: ASME B40.100.
- 3. Case: Sealed type(s); cast aluminum or drawn steel; 4-1/2-inch nominal diameter.
- 4. Pressure-Element Assembly: Bourdon tube unless otherwise indicated.
- 5. Pressure Connection: Brass, with NPS 1/4, ASME B1.20.1 pipe threads and bottom-outlet type unless back-outlet type is indicated.
- 6. Movement: Mechanical, with link to pressure element and connection to pointer.
- 7. Dial: Nonreflective aluminum with permanently etched scale markings graduated in psi.
- 8. Pointer: Dark-colored metal.
- 9. Window: Glass.
- 10. Ring: Brass or Stainless steel.
- 11. Accuracy: Grade A, plus or minus 1 percent of middle half of scale range.

2.4 GAGE ATTACHMENTS

- A. Snubbers: ASME B40.100, brass; with NPS 1/4, ASME B1.20.1 pipe threads and piston-type surge-dampening device. Include extension for use on insulated piping.
- B. Valves: Brass or stainless-steel needle, with NPS 1/4, ASME B1.20.1 pipe threads.

2.5 TEST PLUGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Trerice, H. O. Co.
 - 2. Weiss Instruments, Inc.
 - 3. Weksler Glass Thermometer Corp.
- B. Description: Test-station fitting made for insertion into piping tee fitting.
- C. Body: Brass or stainless steel with core inserts and gasketed and threaded cap. Include extended stem on units to be installed in insulated piping.
- D. Thread Size: NPS 1/4, ASME B1.20.1 pipe thread.
- E. Minimum Pressure and Temperature Rating: 500 psig at 200 deg F.
- F. Core Inserts: EPDM self-sealing rubber.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install thermowells with socket extending to center of pipe and in vertical position in piping tees.

- B. Install thermowells of sizes required to match thermometer connectors. Include bushings if required to match sizes.
- C. Install thermowells with extension on insulated piping.
- D. Fill thermowells with heat-transfer medium.
- E. Install direct-mounted thermometers in thermowells and adjust vertical and tilted positions.
- F. Install direct-mounted pressure gages in piping tees with pressure gage located on pipe at the most readable position.
- G. Install valve and snubber in piping for each pressure gage for fluids.
- H. Install test plugs in piping tees.
- I. Install thermometers in the following locations:
 - 1. Outlet of each water heater.
- J. Install pressure gages in the following locations:
 - 1. Suction and discharge of each domestic water booster pump.

3.2 CONNECTIONS

A. Install meters and gages adjacent to machines and equipment to allow service and maintenance of meters, gages, machines, and equipment.

3.3 ADJUSTING

A. Adjust faces of meters and gages to proper angle for best visibility.

3.4 THERMOMETER SCHEDULE

- A. Thermometers at outlet of each domestic water heater heater shall be one of the following:
 - 1. Metal case, industrial-style, liquid-in-glass type.
 - 2. Test plug with EPDM self-sealing rubber inserts.
- B. Thermometer stems shall be of length to match thermowell insertion length.

3.5 THERMOMETER SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Hot-Water Piping: 30 to 240 deg F.

3.6 PRESSURE-GAGE SCHEDULE

- A. Pressure gages at inlet and outlet of each water pressure-reducing valve shall be one of the following:
 - 1. Sealed, direct-mounted, metal case.
 - 2. Test plug with EPDM self-sealing rubber inserts.

3.7 PRESSURE-GAGE SCALE-RANGE SCHEDULE

A. Scale Range for Domestic Water Piping: 0 to 100 psi.

END OF SECTION 220519

SECTION 220523.12 - BALL VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze ball valves.

1.3 DEFINITIONS

A. CWP: Cold working pressure.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61 Annex G and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, and soldered ends.
 - 3. Set ball valves open to minimize exposure of functional surfaces.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.
- C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use operating handles or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.

B. ASME Compliance:

- 1. ASME B1.20.1 for threads for threaded end valves.
- 2. ASME B16.1 for flanges on iron valves.
- 3. ASME B16.5 for flanges on steel valves.
- 4. ASME B16.10 and ASME B16.34 for ferrous valve dimensions and design criteria.
- 5. ASME B16.18 for solder-joint connections.
- 6. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 Annex G and NSF 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Actuator Types:
 - 1. Handlever: For quarter-turn valves smaller than NPS 4.
- H. Valves in Insulated Piping:
 - 1. Include 2-inch stem extensions.
 - 2. Extended operating handles of nonthermal-conductive material and protective sleeves that allow operation of valves without breaking vapor seals or disturbing insulation.
 - 3. Memory stops that are fully adjustable after insulation is applied.

2.2 BRONZE BALL VALVES

Bronze Ball Valves, Two-Piece with Full Port and Stainless-Steel Trim:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Conbraco Industries, Inc.
 - b. NIBCO INC.
 - c. Watts; a Watts Water Technologies company.

2. Description:

- a. Standard: MSS SP-110.
 b. CWP Rating: 600 psig.
 c. Body Design: Two piece.
 d. Body Material: Bronze.
 e. Ends: Threaded or soldered.
- f. Seats: PTFE.
- g. Stem: Stainless steel.
- h. Ball: Stainless steel, vented.
- i. Port: Full.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

- A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.
- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- B. Select valves with the following end connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded ends except where solder-joint valveend option is indicated in valve schedules below.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged ends except where threaded valve-end option is indicated in valve schedules below.

3.4 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2-1/2 and Smaller:
 - 1. Bronze Valves: May be provided with solder-joint ends instead of threaded ends.
 - 2. Bronze ball valves, two-piece with full port and stainless-steel trim.

END OF SECTION 220523.12

SECTION 220523.14 - CHECK VALVES FOR PLUMBING PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Bronze swing check valves.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. EPDM: Ethylene propylene-diene terpolymer rubber.
- C. NBR: Acrylonitrile-butadiene, Buna-N, or nitrile rubber.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of valve.
 - 1. Certification that products comply with NSF 61 Annex G and NSF 372.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Prepare valves for shipping as follows:
 - 1. Protect internal parts against rust and corrosion.
 - 2. Protect threads, flange faces, grooves, and weld ends.
 - 3. Set check valves in either closed or open position.
- B. Use the following precautions during storage:
 - 1. Maintain valve end protection.
 - 2. Store valves indoors and maintain at higher-than-ambient-dew-point temperature. If outdoor storage is necessary, store valves off the ground in watertight enclosures.

C. Use sling to handle large valves; rig sling to avoid damage to exposed parts. Do not use handwheels or stems as lifting or rigging points.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR VALVES

- A. Source Limitations for Valves: Obtain each type of valve from single source from single manufacturer.
- B. ASME Compliance:
 - 1. ASME B1.20.1 for threads for threaded end valves.
 - 2. ASME B16.18 for solder joint.
 - 3. ASME B31.9 for building services piping valves.
- C. NSF Compliance: NSF 61 Annex G and NSF 372 for valve materials for potable-water service.
- D. Bronze valves shall be made with dezincification-resistant materials. Bronze valves made with copper alloy (brass) containing more than 15 percent zinc are not permitted.
- E. Valve Pressure-Temperature Ratings: Not less than indicated and as required for system pressures and temperatures.
- F. Valve Sizes: Same as upstream piping unless otherwise indicated.
- G. Valve Bypass and Drain Connections: MSS SP-45.

2.2 BRONZE SWING CHECK VALVES

- A. Bronze Swing Check Valves with Nonmetallic Disc, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Milwaukee Valve Company.
 - b. NIBCO INC.
 - c. Watts; a Watts Water Technologies company.
 - 2. Description:
 - a. Standard: MSS SP-80, Type 4.
 - b. CWP Rating: 200 psig.
 - c. Body Design: Horizontal flow.
 - d. Body Material: ASTM B 62, bronze.
 - e. Ends: Threaded or soldered. See valve schedule articles.
 - f. Disc: PTFE.

2.3 IRON SWING CHECK VALVES

- A. Iron Swing Check Valves with Nonmetallic-to-Metal Seats, Class 125:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Crane; Crane Energy Flow Solutions.
 - b. Stockham; Crane Energy Flow Solutions.

2. Description:

- a. Standard: MSS SP-71, Type I.
- b. CWP Rating: 200 psig.
- c. Body Design: Clear or full waterway.
- d. Body Material: ASTM A 126, gray iron with bolted bonnet.
- e. Ends: Flanged or threaded. See valve schedule articles.
- f. Trim: Composition.
- g. Seat Ring: Bronze.
- h. Disc Holder: Bronze.
- i. Disc: PTFE.
- j. Gasket: Asbestos free.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine valve interior for cleanliness, freedom from foreign matter, and corrosion. Remove special packing materials, such as blocks, used to prevent disc movement during shipping and handling.
- B. Operate valves in positions from fully open to fully closed. Examine guides and seats made accessible by such operations.
- C. Examine threads on valve and mating pipe for form and cleanliness.
- D. Examine mating flange faces for conditions that might cause leakage. Check bolting for proper size, length, and material. Verify that gasket is of proper size, that its material composition is suitable for service, and that it is free from defects and damage.
- E. Do not attempt to repair defective valves; replace with new valves.

3.2 VALVE INSTALLATION

A. Install valves with unions or flanges at each piece of equipment arranged to allow service, maintenance, and equipment removal without system shutdown.

- B. Locate valves for easy access and provide separate support where necessary.
- C. Install valves in horizontal piping with stem at or above center of pipe.
- D. Install valves in position to allow full stem movement.
- E. Install check valves for proper direction of flow and as follows:
 - 1. Swing Check Valves: In horizontal position with hinge pin level.
- F. Install valve tags. Comply with requirements in Section 220553 "Identification for Plumbing Piping and Equipment" for valve tags and schedules.

3.3 ADJUSTING

A. Adjust or replace valve packing after piping systems have been tested and put into service but before final adjusting and balancing. Replace valves if persistent leaking occurs.

3.4 GENERAL REQUIREMENTS FOR VALVE APPLICATIONS

- A. If valve applications are not indicated, use the following:
 - 1. Pump-Discharge Check Valves:
 - a. NPS 2 and Smaller: Bronze swing check valves with nonmetallic disc.
 - b. NPS 2-1/2 and Larger for Domestic Water: Iron swing check valves with lever and weight or spring; or iron, center-guided, resilient-seat check valves.
- B. If valves with specified CWP ratings are unavailable, the same types of valves with higher CWP ratings may be substituted.
- C. End Connections:
 - 1. For Copper Tubing, NPS 2 and Smaller: Threaded or soldered.
 - 2. For Copper Tubing, NPS 2-1/2 to NPS 4: Flanged or threaded.

3.5 DOMESTIC HOT- AND COLD-WATER VALVE SCHEDULE

- A. Pipe NPS 2 and Smaller: Bronze swing check valves with nonmetallic disc, Class 125, with soldered or threaded end connections.
- B. Pipe NPS 2-1/2 and Larger:
 - 1. Iron swing check valves with nonmetallic-to-metal seats, Class 125, with Threaded or flanged end connections.

END OF SECTION 220523.14

SECTION 220529 - HANGERS AND SUPPORTS FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Thermal-hanger shield inserts.
- 5. Equipment supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 QUALITY ASSURANCE

- A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.

- 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
- 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
- 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
- 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Flex-Strut Inc.
 - b. Unistrut; Part of Atkore International.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Metallic Coating: Electroplated zinc.

2.4 THERMAL-HANGER SHIELD INSERTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. ERICO International Corporation.
 - 2. National Pipe Hanger Corporation.
 - 3. Pipe Shields Inc.
 - 4. Piping Technology & Products, Inc.
- B. Insulation-Insert Material for Cold Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength and vapor barrier.
- C. Insulation-Insert Material for Hot Piping: ASTM C 591, Type VI, Grade 1 polyisocyanurate with 125-psig minimum compressive strength.

- D. For Trapeze or Clamped Systems: Insert and shield shall cover entire circumference of pipe.
- E. For Clevis or Band Hangers: Insert and shield shall cover lower 180 degrees of pipe.
- F. Insert Length: Extend 2 inches beyond sheet metal shield for piping operating below ambient air temperature.

2.5 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.6 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.

- E. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- F. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.

L. Insulated Piping:

- 1. Attach clamps and spacers to piping.
 - a. All Piping: Use thermal-hanger shield insert with clamp sized to match OD of insert.
 - b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
- 2. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
- 3. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
- 4. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EOUIPMENT SUPPORTS

A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.

3.3 METAL FABRICATIONS

A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers.

- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

A. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers and supports, metal trapeze pipe hangers, and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Use thermal-hanger shield inserts for insulated piping and tubing.

- I. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.
- J. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- K. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
- L. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
 - 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
 - 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
 - 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
 - 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
 - 6. C-Clamps (MSS Type 23): For structural shapes.
 - 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
 - 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
 - 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
 - 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel I-beams for heavy loads, with link extensions.
 - 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
 - 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.

- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- M. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 2. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

END OF SECTION 220529

SECTION 220553 - IDENTIFICATION FOR PLUMBING PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Pipe labels.
- 3. Valve tags.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

- 1. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- 2. Letter Color: White.
- 3. Background Color: Black.
- 4. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 5. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 6. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- 7. Fasteners: Stainless-steel rivets or self-tapping screws.
- 8. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and

title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction.
- B. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- C. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- D. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping-system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.3 VALVE TAGS

- A. Valve Tags: Stamped or engraved with 1/4-inch letters for piping system abbreviation and 1/2-inch numbers.
 - 1. Tag Material: Brass, 0.032-inch minimum thickness, and having predrilled or stamped holes for attachment hardware.
 - 2. Fasteners: Brass wire-link chain or S-hook.
- B. Valve Schedules: For each piping system, on 8-1/2-by-11-inch bond paper. Tabulate valve number, piping system, system abbreviation (as shown on valve tag), location of valve (room or space), normal-operating position (open, closed, or modulating), and variations for identification. Mark valves for emergency shutoff and similar special uses.
 - 1. Valve-tag schedule shall be included in operation and maintenance data.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- C. Pipe Label Color Schedule:
 - 1. Domestic Water Piping
 - a. Background: Safety green.
 - b. Letter Colors: White.

3.5 VALVE-TAG INSTALLATION

A. Install tags on valves and control devices in piping systems, except check valves, valves within factory-fabricated equipment units, shutoff valves, faucets, convenience and lawn-watering hose

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION 215021.00

connections, and similar roughing-in connections of end-use fixtures and units. List tagged valves in a valve schedule.

- B. Valve-Tag Application Schedule: Tag valves according to size, shape, and color scheme and with captions similar to those indicated in the following subparagraphs:
 - 1. Valve-Tag Size and Shape:
 - a. Cold Water: 2 inches, round.b. Hot Water: 2 inches, round.
 - 2. Valve-Tag Colors:
 - a. Cold Water: Natural.
 - b. Hot Water: Natural.
 - 3. Letter Colors:
 - a. Cold Water: White.
 - b. Hot Water: White.

END OF SECTION 220553

SECTION 220719 - PLUMBING PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following plumbing piping services:
 - 1. Domestic cold-water piping.
 - 2. Domestic hot-water piping.
 - 3. Domestic recirculating hot-water piping.
 - 4. Roof drains and rainwater leaders.
 - 5. Supplies and drains for handicap-accessible lavatories and sinks.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied, if any).

1.4 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84 by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.
- C. Comply with the following applicable standards and other requirements specified for miscellaneous components:
 - 1. Supply and Drain Protective Shielding Guards: ICC A117.1.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber, Preformed Pipe Insulation:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:

- a. Johns Manville; a Berkshire Hathaway company.
- b. Knauf Insulation.
- c. Manson Insulation Inc.
- d. Owens Corning.
- 2. Type I, 850 Deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A, with factory-applied ASJ-SSL. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.

2.2 INSULATING CEMENTS

- A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ramco Insulation, Inc.

2.3 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Foster Brand; H. B. Fuller Construction Products.
 - d. Mon-Eco Industries, Inc.
- D. PVC Jacket Adhesive: Compatible with PVC jacket.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Dow Corning Corporation.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. P.I.C. Plastics, Inc.
 - d. Speedline Corporation.

2.4 MASTICS

- A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.
- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below-ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand: H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Knauf Insulation.
 - d. Vimasco Corporation.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.5 SEALANTS

- A. ASJ Flashing Sealants, and Vinyl, PVDC, and PVC Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.6 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.

2.7 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Johns Manville; a Berkshire Hathaway company.
 - b. P.I.C. Plastics, Inc.
 - c. Proto Corporation.
 - d. Speedline Corporation.
 - 2. Adhesive: As recommended by jacket material manufacturer.
 - 3. Color: White.
 - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate.
 - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories.

2.8 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - d. Knauf Insulation.
 - e. Venture Tape.

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION 215021.00

- 2. Width: 3 inches.
- 3. Thickness: 11.5 mils.
- 4. Adhesion: 90 ounces force/inch in width.
- 5. Elongation: 2 percent.
- 6. Tensile Strength: 40 lbf/inch in width.
- 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.
- B. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive; suitable for indoor and outdoor applications.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Compac Corporation.
 - b. Ideal Tape Co., Inc., an American Biltrite Company.
 - c. Venture Tape.
 - 2. Width: 2 inches.
 - 3. Thickness: 6 mils.
 - 4. Adhesion: 64 ounces force/inch in width.
 - 5. Elongation: 500 percent.
 - 6. Tensile Strength: 18 lbf/inch in width.

2.9 SECUREMENTS

A. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

2.10 PROTECTIVE SHIELDING GUARDS

- A. Protective Shielding Pipe Covers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Engineered Brass Company.
 - b. Insul-Tect Products Co.
 - c. McGuire Manufacturing.
 - 2. Description: Manufactured plastic wraps for covering plumbing fixture hot- and cold-water supplies and trap and drain piping. Comply with Americans with Disabilities Act (ADA) requirements.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.

- 1. Install insulation continuously through hangers and around anchor attachments.
- 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
- 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 4 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt

- each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.
- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.

5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF MINERAL-FIBER INSULATION

A. Insulation Installation on Straight Pipes and Tubes:

- 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials.
- 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant.
- 3. For insulation with factory-applied jackets on above-ambient surfaces, secure laps with outward clinched staples at 6 inches o.c.
- 4. For insulation with factory-applied jackets on below-ambient surfaces, do not staple longitudinal tabs. Instead, secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant.

B. Insulation Installation on Pipe Flanges:

- 1. Install preformed pipe insulation to outer diameter of pipe flange.
- 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
- 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation.
- 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant.

C. Insulation Installation on Pipe Fittings and Elbows:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands.

D. Insulation Installation on Valves and Pipe Specialties:

- 1. Install preformed sections of same material as straight segments of pipe insulation when available.
- 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body.
- 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
- 4. Install insulation to flanges as specified for flange insulation application.

3.7 FIELD-APPLIED JACKET INSTALLATION

- A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.

3.8 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.9 INDOOR PIPING INSULATION SCHEDULE

- A. Domestic Cold Water:
 - 1. NPS 2-1/2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- B. Domestic Hot and Recirculated Hot Water:
 - 1. NPS 2 and Smaller: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- C. Stormwater and Overflow:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.
- D. Exposed Sanitary Drains, Domestic Water, Domestic Hot Water, and Stops for Plumbing Fixtures for People with Disabilities:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Mineral-Fiber, Preformed Pipe Insulation, Type I: 1 inch thick.

3.10 INDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. PVC: 30 mils thick.

END OF SECTION 220719

SECTION 221116 - DOMESTIC WATER PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Copper tube and fittings.
 - 2. Transition fittings.
 - 3. Dielectric fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For transition fittings and dielectric fittings.

1.4 INFORMATIONAL SUBMITTALS

- A. System purging and disinfecting activities report.
- B. Field quality-control reports.

1.5 FIELD CONDITIONS

- A. Interruption of Existing Water Service: Do not interrupt water service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary water service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of water service.
 - 2. Do not interrupt water service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

- A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.
- B. Potable-water piping and components shall comply with NSF 14 and NSF 61 Annex G. Plastic piping components shall be marked with "NSF-pw."
- C. Comply with NSF Standard 372 for low lead.

2.2 COPPER TUBE AND FITTINGS

- A. Hard Copper Tube: ASTM B 88, Type L water tube, drawn temper.
- B. Wrought-Copper, Solder-Joint Fittings: ASME B16.22, wrought-copper pressure fittings.
- C. Bronze Flanges: ASME B16.24, Class 150, with solder-joint ends.
- D. Copper Unions:
 - 1. MSS SP-123.
 - 2. Cast-copper-alloy, hexagonal-stock body.
 - 3. Ball-and-socket, metal-to-metal seating surfaces.
 - 4. Solder-joint or threaded ends.

E. Copper Pressure-Seal-Joint Fittings:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Elkhart Products Corporation.
 - c. NIBCO INC.
 - d. Viega LLC.
- 2. Fittings for NPS 2 and Smaller: Wrought-copper fitting with EPDM-rubber, O-ring seal in each end.
- 3. Fittings for NPS 2-1/2 to NPS 4: Cast-bronze or wrought-copper fitting with EPDM-rubber, O-ring seal in each end.

2.3 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric-Flange Insulating Kits:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. Advance Products & Systems, Inc.
 - b. Calpico, Inc.
 - c. Central Plastics Company.
 - d. Pipeline Seal and Insulator, Inc.
- 2. Nonconducting materials for field assembly of companion flanges.
- 3. Pressure Rating: 150 psig.
- 4. Gasket: Neoprene or phenolic.
- 5. Bolt Sleeves: Phenolic or polyethylene.
- 6. Washers: Phenolic with steel backing washers.

C. Dielectric Nipples:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Elster Perfection Corporation.
 - b. Grinnell Mechanical Products.
 - c. Matco-Norca.
 - d. Precision Plumbing Products.
 - e. Victaulic Company.
- 2. Standard: IAPMO PS 66.
- 3. Electroplated steel nipple complying with ASTM F 1545.
- 4. Pressure Rating and Temperature: 300 psig at 225 deg F.
- 5. End Connections: Male threaded.
- 6. Lining: Inert and noncorrosive, propylene.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Comply with requirements in Section 312000 "Earth Moving" for excavating, trenching, and backfilling.

3.2 PIPING INSTALLATION

A. Drawing plans, schematics, and diagrams indicate general location and arrangement of domestic water piping. Indicated locations and arrangements are used to size pipe and calculate friction

loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on coordination drawings.

- B. Install copper tubing under building slab according to CDA's "Copper Tube Handbook."
- C. Install ductile-iron piping under building slab with restrained joints according to AWWA C600 and AWWA M41.
- D. Install shutoff valve, hose-end drain valve, strainer, pressure gage, and test tee with valve inside the building at each domestic water-service entrance. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping" and with requirements for drain valves and strainers in Section 221119 "Domestic Water Piping Specialties."
- E. Install shutoff valve immediately upstream of each dielectric fitting.
- F. Install domestic water piping level without pitch and plumb.
- G. Rough-in domestic water piping for water-meter installation according to utility company's requirements.
- H. Install piping concealed from view and protected from physical contact by building occupants unless otherwise indicated and except in equipment rooms and service areas.
- I. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- J. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal, and coordinate with other services occupying that space.
- K. Install piping to permit valve servicing.
- L. Install nipples, unions, special fittings, and valves with pressure ratings the same as or higher than the system pressure rating used in applications below unless otherwise indicated.
- M. Install piping free of sags and bends.
- N. Install fittings for changes in direction and branch connections.
- O. Install unions in copper tubing at final connection to each piece of equipment, machine, and specialty.
- P. Install pressure gages on suction and discharge piping for each plumbing pump and packaged booster pump. Comply with requirements for pressure gages in Section 220519 "Meters and Gages for Plumbing Piping."
- Q. Install thermostats in hot-water circulation piping. Comply with requirements for thermostats in Section 221123 "Domestic Water Pumps."

- R. Install thermometers on outlet piping from each water heater. Comply with requirements for thermometers in Section 220519 "Meters and Gages for Plumbing Piping."
- S. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- U. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipes, tubes, and fittings before assembly.
- C. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows:
 - 1. Apply appropriate tape or thread compound to external pipe threads.
 - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged.
- D. Soldered Joints for Copper Tubing: Apply ASTM B 813, water-flushable flux to end of tube. Join copper tube and fittings according to ASTM B 828 or CDA's "Copper Tube Handbook."
- E. Pressure-Sealed Joints for Copper Tubing: Join copper tube and pressure-seal fittings with tools recommended by fitting manufacturer.
- F. Flanged Joints: Select appropriate asbestos-free, nonmetallic gasket material in size, type, and thickness suitable for domestic water service. Join flanges with gasket and bolts according to ASME B31.9.
- G. Joints for Dissimilar-Material Piping: Make joints using adapters compatible with materials of both piping systems.

3.4 DIELECTRIC FITTING INSTALLATION

- A. Install dielectric fittings in piping at connections of dissimilar metal piping and tubing.
- B. Dielectric Fittings for NPS 2 and Smaller: Use dielectric nipples.
- C. Dielectric Fittings for NPS 2-1/2 to NPS 4: Use dielectric flange kits.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger, support products, and installation in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Vertical Piping: MSS Type 8 or 42, clamps.
 - 2. Individual, Straight, Horizontal Piping Runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 3. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 4. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support vertical piping and tubing at base and at each floor.
- C. Rod diameter may be reduced one size for double-rod hangers, to a minimum of 3/8 inch.
- D. Install hangers for copper tubing with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 3/4 and Smaller: 60 inches with 3/8-inch rod.
 - 2. NPS 1 and NPS 1-1/4: 72 inches with 3/8-inch rod.
 - 3. NPS 1-1/2 and NPS 2: 96 inches with 3/8-inch rod.
 - 4. NPS 2-1/2: 108 inches with 1/2-inch rod.
 - 5. NPS 3 to NPS 5: 10 feet with 1/2-inch rod.
 - 6. NPS 6: 10 feet with 5/8-inch rod.
 - 7. NPS 8: 10 feet with 3/4-inch rod.
- E. Install supports for vertical copper tubing every 10 feet.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. When installing piping adjacent to equipment and machines, allow space for service and maintenance.
- C. Connect domestic water piping to exterior water-service piping. Use transition fitting to join dissimilar piping materials.
- D. Connect domestic water piping to water-service piping with shutoff valve; extend and connect to the following:
 - 1. Domestic Water Booster Pumps: Cold-water suction and discharge piping.
 - 2. Water Heaters: Cold-water inlet and hot-water outlet piping in sizes indicated, but not smaller than sizes of water heater connections.

- 3. Plumbing Fixtures: Cold- and hot-water-supply piping in sizes indicated, but not smaller than that required by plumbing code.
- 4. Equipment: Cold- and hot-water-supply piping as indicated, but not smaller than equipment connections. Provide shutoff valve and union for each connection. Use flanges instead of unions for NPS 2-1/2 and larger.

3.7 IDENTIFICATION

- A. Identify system components. Comply with requirements for identification materials and installation in Section 220553 "Identification for Plumbing Piping and Equipment."
- B. Label pressure piping with system operating pressure.

3.8 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Piping Inspections:
 - a. Do not enclose, cover, or put piping into operation until it has been inspected and approved by authorities having jurisdiction.
 - b. During installation, notify authorities having jurisdiction at least one day before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction:
 - 1) Roughing-in Inspection: Arrange for inspection of piping before concealing or closing in after roughing in and before setting fixtures.
 - 2) Final Inspection: Arrange for authorities having jurisdiction to observe tests specified in "Piping Tests" Subparagraph below and to ensure compliance with requirements.
 - c. Reinspection: If authorities having jurisdiction find that piping will not pass tests or inspections, make required corrections and arrange for reinspection.
 - d. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.

2. Piping Tests:

- a. Fill domestic water piping. Check components to determine that they are not air bound and that piping is full of water.
- b. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit a separate report for each test, complete with diagram of portion of piping tested.
- c. Leave new, altered, extended, or replaced domestic water piping uncovered and unconcealed until it has been tested and approved. Expose work that was covered or concealed before it was tested.
- d. Cap and subject piping to static water pressure of 50 psig above operating pressure, without exceeding pressure rating of piping system materials. Isolate test source

- and allow it to stand for four hours. Leaks and loss in test pressure constitute defects that must be repaired.
- e. Repair leaks and defects with new materials, and retest piping or portion thereof until satisfactory results are obtained.
- f. Prepare reports for tests and for corrective action required.
- B. Domestic water piping will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

3.9 ADJUSTING

- A. Perform the following adjustments before operation:
 - 1. Close drain valves, hydrants, and hose bibbs.
 - 2. Open shutoff valves to fully open position.
 - 3. Open throttling valves to proper setting.
 - 4. Adjust balancing valves in hot-water-circulation return piping to provide adequate flow.
 - a. Manually adjust ball-type balancing valves in hot-water-circulation return piping to provide hot-water flow in each branch.
 - b. Adjust calibrated balancing valves to flows indicated.
 - 5. Remove plugs used during testing of piping and for temporary sealing of piping during installation.
 - 6. Remove and clean strainer screens. Close drain valves and replace drain plugs.
 - 7. Remove filter cartridges from housings and verify that cartridges are as specified for application where used and are clean and ready for use.
 - 8. Check plumbing specialties and verify proper settings, adjustments, and operation.

3.10 CLEANING

- A. Clean and disinfect potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging and disinfecting procedures prescribed by authorities having jurisdiction; if methods are not prescribed, use procedures described in either AWWA C651 or AWWA C652 or follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Fill and isolate system according to either of the following:
 - 1) Fill system or part thereof with water/chlorine solution with at least 50 ppm of chlorine. Isolate with valves and allow to stand for 24 hours.
 - 2) Fill system or part thereof with water/chlorine solution with at least 200 ppm of chlorine. Isolate and allow to stand for three hours.

- c. Flush system with clean, potable water until no chlorine is in water coming from system after the standing time.
- d. Repeat procedures if biological examination shows contamination.
- e. Submit water samples in sterile bottles to authorities having jurisdiction.
- B. Clean non-potable domestic water piping as follows:
 - 1. Purge new piping and parts of existing piping that have been altered, extended, or repaired before using.
 - 2. Use purging procedures prescribed by authorities having jurisdiction or; if methods are not prescribed, follow procedures described below:
 - a. Flush piping system with clean, potable water until dirty water does not appear at outlets.
 - b. Submit water samples in sterile bottles to authorities having jurisdiction. Repeat procedures if biological examination shows contamination.
- C. Prepare and submit reports of purging and disinfecting activities. Include copies of water-sample approvals from authorities having jurisdiction.
- D. Clean interior of domestic water piping system. Remove dirt and debris as work progresses.

3.11 PIPING SCHEDULE

- A. Transition and special fittings with pressure ratings at least equal to piping rating may be used in applications below unless otherwise indicated.
- B. Flanges and unions may be used for aboveground piping joints unless otherwise indicated.
- C. Fitting Option: Extruded-tee connections and brazed joints may be used on aboveground copper tubing.
- D. Aboveground domestic water piping, NPS 2-1/2 and smaller, shall be one of the following:
 - 1. Hard copper tube, ASTM B 88, Type L; wrought-copper, solder-joint fittings; and soldered joints.
 - 2. Hard copper tube, ASTM B 88, Type L; copper pressure-seal-joint fittings; and pressure-sealed joints.

3.12 VALVE SCHEDULE

- A. Drawings indicate valve types to be used. Where specific valve types are not indicated, the following requirements apply:
 - 1. Shutoff Duty: Use ball or gate valves for piping NPS 2 and smaller. Use ball valves with flanged ends for piping NPS 2-1/2 and larger.
 - 2. Throttling Duty: Use ball valves for piping NPS 2 and smaller. Use ball valves with flanged ends for piping NPS 2-1/2 and larger.

- 3. Hot-Water Circulation Piping, Balancing Duty: Calibrated balancing valves.
- 4. Drain Duty: Hose-end drain valves.
- B. Use check valves to maintain correct direction of domestic water flow to and from equipment.
- C. Iron grooved-end valves may be used with grooved-end piping.

END OF SECTION 221116

SECTION 221119 - DOMESTIC WATER PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Vacuum breakers.
- 2. Backflow preventers.
- 3. Balancing valves.
- 4. Temperature-actuated, water mixing valves.
- 5. Strainers.
- 6. Outlet boxes.
- 7. Hose bibbs.
- 8. Wall hydrants.
- 9. Drain valves.
- 10. Water-hammer arresters.
- 11. Air vents.
- 12. Barrier-type trap seal protection device.
- 13. Flexible connectors.

B. Related Requirements:

- 1. Section 220519 "Meters and Gages for Plumbing Piping" for thermometers, pressure gages, and flow meters in domestic water piping.
- 2. Section 221116 "Domestic Water Piping" for water meters.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS FOR PIPING SPECIALTIES

A. Potable-water piping and components shall comply with NSF 61 Annex G and NSF 14.

2.2 PERFORMANCE REQUIREMENTS

A. Minimum Working Pressure for Domestic Water Piping Specialties: 125 psig unless otherwise indicated.

2.3 VACUUM BREAKERS

- A. Pipe-Applied, Atmospheric-Type Vacuum Breakers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
 - 2. Standard: ASSE 1001.
 - 3. Size: NPS 1/4 to NPS 3, as required to match connected piping.
 - 4. Body: Bronze.
 - 5. Inlet and Outlet Connections: Threaded.
 - 6. Finish: Rough bronze or chrome plated.

B. Hose-Connection Vacuum Breakers:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASSE 1011.
- 3. Body: Bronze, nonremovable, with manual drain.
- 4. Outlet Connection: Garden-hose threaded complying with ASME B1.20.7.
- 5. Finish: Chrome or nickel plated.

2.4 BACKFLOW PREVENTERS

A. Reduced-Pressure-Principle Backflow Preventers:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASSE 1013.
- 3. Operation: Continuous-pressure applications.
- 4. Pressure Loss: 12 psig maximum, through middle third of flow range.
- 5. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved for NPS 2-1/2 and larger.
- 6. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 7. Configuration: Designed for horizontal, straight-through flow.
- 8. Accessories:
 - a. Valves NPS 2 and Smaller: Ball type with threaded ends on inlet and outlet.
 - b. Valves NPS 2-1/2 and Larger: Outside-screw and yoke-gate type with flanged ends on inlet and outlet.
 - c. Air-Gap Fitting: ASME A112.1.2, matching backflow-preventer connection.

2.5 BALANCING VALVES

- A. Copper-Alloy Calibrated Balancing Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Armstrong International, Inc.
 - b. NIBCO INC.
 - c. TACO Comfort Solutions, Inc.
 - d. Watts; a Watts Water Technologies company.
 - 2. Type: Ball valve with two readout ports and memory-setting indicator.
 - 3. Body: Bronze.
 - 4. Size: Same as connected piping, but not larger than NPS 2.
 - 5. Accessories: Meter hoses, fittings, valves, differential pressure meter, and carrying case.

2.6 TEMPERATURE-ACTUATED, WATER MIXING VALVES

A. Individual-Fixture, Water Tempering Valves:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASSE 1016, thermostatically controlled, water tempering valve.
- 3. Pressure Rating: 125 psig minimum unless otherwise indicated.
- 4. Body: Bronze body with corrosion-resistant interior components.
- 5. Temperature Control: Adjustable.
- 6. Inlets and Outlet: Threaded.
- 7. Finish: Rough or chrome-plated bronze.
- 8. Tempered-Water Setting: 110 deg F.

2.7 STRAINERS FOR DOMESTIC WATER PIPING

A. Y-Pattern Strainers:

- 1. Pressure Rating: 125 psig minimum unless otherwise indicated.
- 2. Body: Bronze for NPS 2 and smaller; cast iron with interior lining that complies with AWWA C550 or that is FDA approved, epoxy coated and for NPS 2-1/2 and larger.
- 3. End Connections: Threaded for NPS 2 and smaller; flanged for NPS 2-1/2 and larger.
- 4. Screen: Stainless steel with round perforations unless otherwise indicated.
- 5. Perforation Size:
 - a. Strainers NPS 2 and Smaller: 0.020 inch.
 - b. Strainers NPS 2-1/2 to NPS 4: 0.045 inch.
- 6. Drain: Factory-installed, hose-end drain valve.

2.8 OUTLET BOXES

A. Clothes Washer Outlet Boxes:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Acorn Engineering Company.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Mounting: Recessed.
- 3. Material and Finish: Plastic box and faceplate.

- 4. Faucet: Combination valved fitting or separate hot- and cold-water valved fittings complying with ASME A112.18.1. Include garden-hose thread complying with ASME B1.20.7 on outlets.
- 5. Supply Shutoff Fittings: NPS 1/2 gate, globe, or ball valves and NPS 1/2 copper, water tubing.
- 6. Drain: NPS 2 standpipe and P-trap for direct waste connection to drainage piping.
- 7. Inlet Hoses: Two 60-inch-long, rubber household clothes washer inlet hoses with female, garden-hose-thread couplings. Include rubber washers.
- 8. Drain Hose: One 48-inch-long, rubber household clothes washer drain hose with hooked end.

B. Icemaker Outlet Boxes:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Acorn Engineering Company.
 - b. Oatey.
 - c. Plastic Oddities.
- 2. Mounting: Recessed.
- 3. Material and Finish: Plastic box and faceplate.
- 4. Faucet: Valved fitting complying with ASME A112.18.1. Include NPS 1/2 or smaller copper tube outlet.
- 5. Supply Shutoff Fitting: NPS 1/2 gate, globe, or ball valve and NPS 1/2 copper, water tubing.

2.9 HOSE BIBBS

A. Hose Bibbs:

- 1. Standard: ASME A112.18.1 for sediment faucets.
- 2. Body Material: Bronze.
- 3. Seat: Bronze, replaceable.
- 4. Supply Connections: NPS 1/2 or NPS 3/4 threaded or solder-joint inlet.
- 5. Outlet Connection: Garden-hose thread complying with ASME B1.20.7.
- 6. Pressure Rating: 125 psig.
- 7. Vacuum Breaker: Integrall nonremovable, drainable, hose-connection vacuum breaker complying with ASSE 1011.
- 8. Finish for Equipment Rooms: Rough bronze, or chrome or nickel plated.
- 9. Finish for Service Areas: Rough bronze.
- 10. Finish for Finished Rooms: Chrome or nickel plated.
- 11. Operation for Equipment Rooms: Wheel handle or operating key.
- 12. Operation for Service Areas: Wheel handle.
- 13. Operation for Finished Rooms: Operating key.
- 14. Include operating key with each operating-key hose bibb.
- 15. Include integral wall flange with each chrome- or nickel-plated hose bibb.

2.10 WALL HYDRANTS

A. Nonfreeze Wall Hydrants:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASME A112.21.3M for concealed-outlet, self-draining wall hydrants.
- 3. Pressure Rating: 125 psig.
- 4. Operation: Loose key.
- 5. Casing and Operating Rod: Of length required to match wall thickness. Include wall clamp.
- 6. Inlet: NPS 3/4 or NPS 1.
- 7. Outlet: Concealed, with integral vacuum breaker and garden-hose thread complying with ASME B1.20.7.
- 8. Box: Deep, flush mounted with cover.
- 9. Box and Cover Finish: Chrome plated.
- 10. Operating Keys(s): One with each wall hydrant.

2.11 DRAIN VALVES

A. Ball-Valve-Type, Hose-End Drain Valves:

- 1. Standard: MSS SP-110 for standard-port, two-piece ball valves.
- 2. Pressure Rating: 400-psig minimum CWP.
- 3. Size: NPS 3/4.
- 4. Body: Copper alloy.
- 5. Ball: Chrome-plated brass.
- 6. Seats and Seals: Replaceable.
- 7. Handle: Vinyl-covered steel.
- 8. Inlet: Threaded or solder joint.
- 9. Outlet: Threaded, short nipple with garden-hose thread complying with ASME B1.20.7 and cap with brass chain.

2.12 WATER-HAMMER ARRESTERS

A. Water-Hammer Arresters:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. AMTROL, Inc.
 - b. Jay R. Smith Mfg. Co.

- c. Sioux Chief Manufacturing Company, Inc.
- d. Watts; a Watts Water Technologies company.
- e. Zurn Industries, LLC.
- 2. Standard: ASSE 1010 or PDI-WH 201.
- 3. Type: Copper tube with piston.
- 4. Size: ASSE 1010, Sizes AA and A through F, or PDI-WH 201, Sizes A through F.

2.13 AIR VENTS

- A. Bolted-Construction Automatic Air Vents:
 - 1. Body: Bronze.
 - 2. Pressure Rating and Temperature: 125-psig minimum pressure rating at 140 deg F.
 - 3. Float: Replaceable, corrosion-resistant metal.
 - 4. Mechanism and Seat: Stainless steel.
 - 5. Size: NPS 3/8minimum inlet.
 - 6. Inlet and Vent Outlet End Connections: Threaded.

2.14 BARRIER-TYPE TRAP SEAL PROTECTION DEVICE

- A. Barrier-Type Trap Seal Protection Device:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. ProSet Systems, Inc.
 - b. RectorSeal
 - 2. Standard: ASSE 1072.
 - 3. Material: EPDM

2.15 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Flex Pression Ltd.
 - 2. Flex-Hose Co., Inc.
 - 3. Flexicraft Industries.
- B. Stainless-Steel-Hose Flexible Connectors: Corrugated-stainless-steel tubing with stainless-steel wire-braid covering and ends welded to inner tubing.
 - 1. Working-Pressure Rating: Minimum 200 psig.
 - 2. End Connections NPS 2 and Smaller: Threaded steel-pipe nipple.

3. End Connections NPS 2-1/2 and Larger: Flanged steel nipple.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install backflow preventers in each water supply to mechanical equipment and systems and to other equipment and water systems that may be sources of contamination. Comply with authorities having jurisdiction.
 - 1. Locate backflow preventers in same room as connected equipment or system.
 - 2. Install drain for backflow preventers with atmospheric-vent drain connection with air-gap fitting, fixed air-gap fitting, or equivalent positive pipe separation of at least two pipe diameters in drain piping and pipe-to-floor drain. Locate air-gap device attached to or under backflow preventer. Simple air breaks are unacceptable for this application.
 - 3. Do not install bypass piping around backflow preventers.
- B. Install balancing valves in locations where they can easily be adjusted.
- C. Install temperature-actuated, water mixing valves with check stops or shutoff valves on inlets and with shutoff valve on outlet.
- D. Install Y-pattern strainers for water on supply side of each pump.
- E. Install outlet boxes recessed in wall or surface mounted on wall. Install 2-by-4-inch fire-retardant-treated-wood blocking, wall reinforcement between studs.
- F. Install water-hammer arresters in water piping according to PDI-WH 201.
- G. Install air vents at high points of water piping.
- H. Install barrier-type trap seal protection device according to manufacturer instructions.

3.2 CONNECTIONS

- A. Comply with requirements for ground equipment in Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Fire-retardant-treated-wood blocking is specified in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical connections.

3.3 LABELING AND IDENTIFYING

- A. Equipment Nameplates and Signs: Install engraved plastic-laminate equipment nameplate or sign on or near each of the following:
 - 1. Pressure vacuum breakers.

- 2. Reduced-pressure-principle backflow preventers.
- 3. Calibrated balancing valves.
- 4. Outlet boxes.
- 5. Trap-seal primer systems.
- B. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Test each pressure vacuum breaker and reduced-pressure-principle backflow preventer according to authorities having jurisdiction and the device's reference standard.
- B. Domestic water piping specialties will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

- A. Set field-adjustable flow set points of balancing valves.
- B. Set field-adjustable temperature set points of temperature-actuated, water mixing valves.

END OF SECTION 221119

SECTION 221123 - DOMESTIC WATER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Horizontally mounted, in-line, close-coupled centrifugal pumps.

1.3 DEFINITIONS

A. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include materials of construction, rated capacities, certified performance curves with operating points plotted on curves, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For domestic water pumps to include in operation and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. UL Compliance: Comply with UL 778 for motor-operated water pumps.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Retain shipping flange protective covers and protective coatings during storage.

- B. Protect bearings and couplings against damage.
- C. Comply with pump manufacturer's written rigging instructions for handling.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 HORIZONTALLY MOUNTED, IN-LINE, CLOSE-COUPLED CENTRIFUGAL PUMPS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Bell & Gossett; a Xylem brand.
 - 2. TACO Comfort Solutions, Inc.
- B. Description: Factory-assembled and -tested, in-line, single-stage, close-coupled, overhungimpeller centrifugal pumps designed for installation with pump and motor shaft mounted horizontal.

C. Pump Construction:

- 1. Casing: Radially split with threaded companion-flange connections for pumps with NPS 2 pipe connections and flanged connections for pumps with NPS 2-1/2 pipe connections.
- 2. Impeller: Statically and dynamically balanced, closed, and keyed to shaft.
- 3. Shaft and Shaft Sleeve: Steel shaft with deflector, with copper-alloy shaft sleeve. Include water slinger on shaft between motor and seal.
- 4. Seal: Mechanical, with carbon-steel rotating ring, stainless-steel spring, ceramic seat, and rubber bellows and gasket.
- 5. Bearings: Oil-lubricated; bronze-journal or ball type.
- 6. Shaft Coupling: Flexible, capable of absorbing torsional vibration and shaft misalignment.
- D. Motor: Single speed, with grease-lubricated ball bearings; and resiliently or rigidly mounted to pump casing.

2.2 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."

1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

2.3 CONTROLS

- A. Thermostats: Electric; adjustable for control of hot-water circulation pump.
 - 1. Type: Water-immersion temperature sensor, for installation in piping.
 - 2. Range: 65 to 200 deg F.
 - 3. Enclosure: NEMA 250, Type 4X.
 - 4. Operation of Pump: On or off.
 - 5. Transformer: Provide if required.
 - 6. Power Requirement: 24 V, ac.
 - 7. Settings: Start pump at 130 deg F.
- B. Timers: Electric, for control of hot-water circulation pump.
 - 1. Type: Programmable, seven-day clock with manual override on-off switch.
 - 2. Enclosure: NEMA 250, Type 1, suitable for wall mounting.
 - 3. Operation of Pump: On or off.
 - 4. Transformer: Provide if required.
 - 5. Power Requirement: 24-V ac.
 - 6. Programmable Sequence of Operation: Up to two on-off cycles each day for seven days.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of domestic-water-piping system to verify actual locations of connections before pump installation.

3.2 PUMP INSTALLATION

- A. Comply with HI 1.4.
- B. Install in-line, sealless centrifugal pumps with shaft horizontal unless otherwise indicated.
- C. Install horizontally mounted, in-line, close-coupled centrifugal pumps with shaft(s) horizontal.
- D. Install vertically mounted, in-line, close-coupled centrifugal pumps with shaft vertical.
- E. Install continuous-thread hanger rods and spring hangers with vertical-limit stop of size required to support pump weight.
 - 1. Comply with requirements for hangers and supports specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."

- F. Install pressure switches in water supply piping.
- G. Install thermostats in hot-water return piping.
- H. Install timers on wall in mechanical room.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to pumps to allow service and maintenance.
- C. Connect domestic water piping to pumps. Install suction and discharge piping equal to or greater than size of pump nozzles.
 - 1. Install flexible connectors adjacent to pumps in suction and discharge piping of the following pumps:
 - a. Horizontally mounted, in-line, close-coupled centrifugal pumps.
- D. Install shutoff valve and strainer on suction side of each pump, and check, shutoff, and throttling valves on discharge side of each pump. Install valves same size as connected piping. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping" and comply with requirements for strainers specified in Section 221119 "Domestic Water Piping Specialties."
 - 1. Install pressure gage and snubber at suction of each pump and pressure gage and snubber at discharge of each pump. Install at integral pressure-gage tappings where provided or install pressure-gage connectors in suction and discharge piping around pumps. Comply with requirements for pressure gages and snubbers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- E. Connect thermostats and timers to pumps that they control.

3.4 IDENTIFICATION

A. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment" for identification of pumps.

3.5 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Check piping connections for tightness.
 - 3. Clean strainers on suction piping.
 - 4. Set thermostats and timers for automatic starting and stopping operation of pumps.

- 5. Perform the following startup checks for each pump before starting:
 - a. Verify bearing lubrication.
 - b. Verify that pump is free to rotate by hand and that pump for handling hot liquid is free to rotate with pump hot and cold. If pump is bound or drags, do not operate until cause of trouble is determined and corrected.
 - c. Verify that pump is rotating in the correct direction.
- 6. Prime pump by opening suction valves and closing drains, and prepare pump for operation.
- 7. Start motor.
- 8. Open discharge valve slowly.
- 9. Adjust temperature settings on thermostats.
- 10. Adjust timer settings.

3.6 ADJUSTING

- A. Adjust domestic water pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature set points.
- C. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

END OF SECTION 221123

SECTION 221123.13 - DOMESTIC-WATER PACKAGED BOOSTER PUMPS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Simplex, variable-speed booster pumps.
- B. Related Sections:
 - 1. Section 221123 "Domestic Water Pumps" for domestic-water circulation pumps.

1.3 DEFINITIONS

A. VFC: Variable-frequency controller(s).

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include construction details, material descriptions, and dimensions of individual components and profiles. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For booster pumps to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. ASME Compliance: Comply with ASME B31.9 for piping.
- C. UL Compliance for Packaged Pumping Systems:

- 1. UL 508, "Industrial Control Equipment."
- 2. UL 508A, "Industrial Control Panels."
- 3. UL 778, "Motor-Operated Water Pumps."
- 4. UL 1995, "Heating and Cooling Equipment."
- D. Booster pumps shall be listed and labeled as packaged pumping systems by testing agency acceptable to authorities having jurisdiction.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Retain protective coatings and flange's protective covers during storage.

1.8 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

PART 2 - PRODUCTS

2.1 SIMPLEX, VARIABLE-SPEED BOOSTER PUMPS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Grundfos Pumps Corporation U.S.A.
 - 2. ITT Flowtronex.
 - 3. Metron Control Products div. Hubbell Industrial Controls.
- B. Description: Factory-assembled and -tested, fluid-handling system for domestic water, with pump, piping, valves, specialties, and controls, and mounted on base.

C. Pump:

- 1. Type: Stainless steel vertical in-line closed coupled centrifugal pump.
- 2. Casing: The pump casing shall be of deep drawn, laser welded AISI 304L or 316L stainless steel (optional cast iron) and shall be capable of withstanding maximum working pressures of 360 psi or 580 psi. Number based on pump staging and flange selection. Piping connections shall be in-line (optional top/bottom) and shall be compatible with ANSI raised face flanges.
- 3. Impeller: Impellers shall be of enclosed design and constructed of AISI 316L or AISI 304L stainless steel. Impellers shall provide internal thrust balance in each stage statically and dynamically balanced and keyed to shaft.
- 4. Shaft and Shaft Sleeve: Steel shaft, with copper-alloy shaft sleeve and deflector.
- 5. Seal: Mechanical.
- 6. Orientation: Mounted vertically.

D. Motor: Single speed, with grease-lubricated or pre-greased, permanently shielded, ball-type bearings, and directly mounted to pump casing. Select motor that will not overload through full range of pump performance curve.

E. Valves:

- 1. Shutoff Valves NPS 2-1/2 and Smaller: two-piece, full-port ball valve, in pump suction and discharge piping.
- 2. Check Valve NPS 2-1/2 and Larger: Silent type in pump discharge piping.
- 3. Thermal-Relief Valve: Temperature-and-pressure relief type in pump discharge piping.
- F. Dielectric Fittings: With insulating material isolating joined dissimilar metals.
- G. Hydropneumatic Tank: Precharged diaphragm or bladder tank made of materials complying with NSF 61 Annex G.
- H. Control Panel: Factory installed and connected as an integral part of booster pump; automatic for single-pump, variable-speed operation, with load control and protection functions.
 - 1. Control Logic: Solid-state system with transducers, programmable microprocessor, VFC, and other devices in the controller.
 - 2. Motor Controller: NEMA ICS 2, variable-frequency, solid-state type.
 - a. Control Voltage: 24-V ac, with integral control-power transformer.
 - 3. Enclosure: NEMA 250, Type 4.
 - 4. Motor Overload Protection: Overload relay in each phase.
 - 5. Starting Devices: Hand-off-automatic selector switch in cover of control panel, plus pilot device for automatic control.
 - 6. Pump Operation: Pressure-sensing method.
 - a. Time Delay: Controls pump on-off operation; adjustable from 1 to 300 seconds.
 - 7. VFC: Voltage-source, pulse-width, modulating-frequency converter; installed in control panel.
 - 8. Manual Bypass: Magnetic contactor arranged to transfer to constant-speed operation upon VFC failure.
 - 9. Instrumentation: Suction and discharge pressure gages.
 - 10. Light: Running light for pump.
 - 11. Thermal-bleed cutoff.
 - 12. High-suction-pressure cutout.
 - 13. Low-discharge-pressure cutout.
 - 14. High-discharge-pressure cutout.
 - 15. Direct Digital Control (DDC) System for HVAC: Provide auxiliary contacts for interface to BACnet DDC system. DDC systems are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC." Include the following:
 - a. On-off status of each pump.
 - b. Alarm status.

- I. Base: Structural steel.
 - 1. Hydropneumatic Tank:
 - a. Pressure Rating: 125 psig.

2.2 MOTORS

- A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors.
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
 - 2. Controllers, Electrical Devices, and Wiring: Comply with requirements for electrical devices and connections specified in NFPA 70.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in for booster pumps to verify actual locations of piping connections before booster-pump installation.

3.2 INSTALLATION

- A. Equipment Mounting:
 - 1. Install booster pumps on cast-in-place concrete equipment base(s). Comply with requirements for equipment bases and foundations specified in Section 033000 "Cast-in-Place Concrete".
- B. Support connected domestic-water piping so weight of piping is not supported by booster pumps.

3.3 CONNECTIONS

- A. Comply with requirements for piping specified in Section 221116 "Domestic Water Piping." Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect domestic-water piping to booster pumps. Install suction and discharge pipe equal to or greater than size of system suction and discharge piping.
 - 1. Install shutoff valves on piping connections to booster-pump suction and discharge piping. Install ball valves same size as suction and discharge piping. Comply with requirements for general-duty valves specified in Section 220523.12 "Ball Valves for Plumbing Piping".

- 2. Install union, flanged, or grooved-joint connections on suction and discharge piping at connection to domestic-water piping. Comply with requirements for unions and flanges specified in Section 221116 "Domestic Water Piping."
- 3. Install valved bypass, same size as and between piping, at connections to booster-pump suction and discharge piping. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."
- 4. Install flexible connectors, same size as piping, on piping connections to booster-pump suction and discharge piping. Comply with requirements for flexible connectors specified in Section 221116 "Domestic Water Piping."
- 5. Install piping adjacent to booster pumps to allow service and maintenance.

3.4 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

C. Tests and Inspections:

- 1. Perform visual and mechanical inspection.
- 2. Leak Test: After installation, charge booster pump and test for leaks. Repair leaks and retest until no leaks exist.
- 3. Operational Test: After electrical circuitry has been energized, start booster pumps to confirm proper motor rotation and booster-pump operation.
- 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Pumps and controls will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.6 STARTUP SERVICE

- A. Perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.

3.7 ADJUSTING

- A. Adjust booster pumps to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust pressure set points.
- C. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting booster pump to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain booster pumps.

END OF SECTION 221123.13

SECTION 221316 - SANITARY WASTE AND VENT PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Pipe, tube, and fittings.
 - 2. Specialty pipe fittings.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 FIELD CONDITIONS

- A. Interruption of Existing Sanitary Waste Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of sanitary waste service.
 - 2. Do not proceed with interruption of sanitary waste service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Soil, Waste, and Vent Piping: 10-foot head of water.

2.2 PIPING MATERIALS

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.3 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy class(es).
- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.4 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. ANACO-Husky.
 - b. Charlotte Pipe and Foundry Company.
 - c. MIFAB, Inc.
 - d. Mission Rubber Company, LLC; a division of MCP Industries.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.5 PVC PIPE AND FITTINGS

- A. Comply with NSF 14, "Plastics Piping Systems Components and Related Materials," for plastic piping components. Include marking with "NSF-dwv" for plastic drain, waste, and vent piping and "NSF-sewer" for plastic sewer piping.
- B. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- D. Solvent Cement: ASTM D 2564.

2.6 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

- 1. Fitting-Type Transition Couplings: Manufactured piping coupling or specified piping system fitting.
- 2. Shielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Mission Rubber Company, LLC; a division of MCP Industries.
 - b. Standard: ASTM C 1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end
 - d. End Connections: Same size as and compatible with pipes to be joined.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems.
 - 1. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations.
 - 2. Install piping as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for soil and waste drainage and vent piping using appropriate branches, bends, and long-sweep bends.
 - 1. Sanitary tees and short-sweep 1/4 bends may be used on vertical stacks if change in direction of flow is from horizontal to vertical.
 - 2. Use long-turn, double Y-branch and 1/8-bend fittings if two fixtures are installed back to back or side by side with common drain pipe.
 - a. Straight tees, elbows, and crosses may be used on vent lines.
 - 3. Do not change direction of flow more than 90 degrees.
 - 4. Use proper size of standard increasers and reducers if pipes of different sizes are connected.
 - a. Reducing size of waste piping in direction of flow is prohibited.
- K. Lay buried building waste piping beginning at low point of each system.
 - 1. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream.
 - 2. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.
 - 3. Maintain swab in piping and pull past each joint as completed.
- L. Install soil and waste and vent piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Sanitary Waste: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
 - 2. Horizontal Sanitary Waste Piping: 2 percent downward in direction of flow.
 - 3. Vent Piping: 1 percent down toward vertical fixture vent or toward vent stack.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105/A 21.5.
- N. Install aboveground PVC piping according to ASTM D 2665.

- O. Install underground PVC piping according to ASTM D 2321.
 - 1. Install cleanouts at grade and extend to where building sanitary drains connect to building sanitary sewers in sanitary waste gravity-flow piping.
 - a. Install cleanout fitting with closure plug inside the building in sanitary drainage force-main piping.
 - b. Comply with requirements for cleanouts specified in Section 221319 "Sanitary Waste Piping Specialties."
 - 2. Install drains in sanitary waste gravity-flow piping.
 - a. Comply with requirements for drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- P. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- Q. Install sleeves for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- R. Install sleeve seals for piping penetrations of concrete walls and slabs.
 - 1. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- S. Install escutcheons for piping penetrations of walls, ceilings, and floors.
 - 1. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Join hub-and-spigot, cast-iron soil piping with gasket joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Join hub-and-spigot, cast-iron soil piping with calked joints according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead-and-oakum calked joints.
- C. Join hubless, cast-iron soil piping according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- D. Plastic, Nonpressure-Piping, Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 appendixes.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

- 1. Install transition couplings at joints of piping with small differences in ODs.
- 2. In Waste Drainage Piping: Shielded, nonpressure transition couplings.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Install individual, straight, horizontal piping runs:
 - a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
 - b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
 - c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
 - 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
 - 6. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- F. Install supports for vertical cast-iron soil piping every 15 feet.
- G. Install hangers for PVC piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 48 inches with 3/8-inch rod.
 - 2. NPS 3: 48 inches with 1/2-inch rod.

- 3. NPS 4 and NPS 5: 48 inches with 5/8-inch rod.
- 4. NPS 6 and NPS 8: 48 inches with 3/4-inch rod.
- 5. NPS 10 and NPS 12: 48 inches with 7/8-inch rod.
- H. Install supports for vertical PVC piping every 48 inches.
- I. Support piping and tubing not listed above according to MSS SP-58 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect soil and waste piping to exterior sanitary sewerage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect waste and vent piping to the following:
 - 1. Plumbing Fixtures: Connect waste piping in sizes indicated, but not smaller than required by plumbing code.
 - 2. Plumbing Fixtures and Equipment: Connect atmospheric vent piping in sizes indicated, but not smaller than required by authorities having jurisdiction.
 - 3. Plumbing Specialties: Connect waste and vent piping in sizes indicated, but not smaller than required by plumbing code.
 - 4. Install test tees (wall cleanouts) in conductors near floor and floor cleanouts with cover flush with floor.
 - 5. Comply with requirements for cleanouts and drains specified in Section 221319 "Sanitary Waste Piping Specialties."
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections according to the following unless otherwise indicated:
 - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
 - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

- A. Identify exposed sanitary waste and vent piping.
- B. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in and before setting fixtures.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test sanitary waste and vent piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired.
 - a. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced waste and vent piping until it has been tested and approved.
 - a. Expose work that was covered or concealed before it was tested.
 - 3. Roughing-in Plumbing Test Procedure: Test waste and vent piping except outside leaders on completion of roughing-in.
 - a. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water.
 - b. From 15 minutes before inspection starts to completion of inspection, water level must not drop.
 - c. Inspect joints for leaks.
 - 4. Finished Plumbing Test Procedure: After plumbing fixtures have been set and traps filled with water, test connections and prove they are gastight and watertight.
 - a. Plug vent-stack openings on roof and building drains where they leave building. Introduce air into piping system equal to pressure of 1-inch wg.
 - b. Use U-tube or manometer inserted in trap of water closet to measure this pressure.
 - c. Air pressure must remain constant without introducing additional air throughout period of inspection.
 - d. Inspect plumbing fixture connections for gas and water leaks.
 - 5. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.

6. Prepare reports for tests and required corrective action.

3.9 CLEANING AND PROTECTION

- A. Clean interior of piping. Remove dirt and debris as work progresses.
- B. Protect sanitary waste and vent piping during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.
- D. Exposed PVC Piping: Protect plumbing vents exposed to sunlight with two coats of water-based latex paint.
- E. Repair damage to adjacent materials caused by waste and vent piping installation.

3.10 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground, soil and waste piping NPS 4 and smaller shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Aboveground, vent piping NPS 4 and smaller shall be any of the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled joints.
 - 2. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 3. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- D. Underground, soil, waste, and vent piping NPS 4 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil piping; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; CISPI hubless-piping couplings; and coupled ioints.
 - 3. Solid wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

END OF SECTION 221316

SECTION 221319 - SANITARY WASTE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Cleanouts.
 - 2. Roof flashing assemblies.
 - 3. Miscellaneous sanitary drainage piping specialties.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene-styrene.
- B. FOG: Fats, oils, and greases.
- C. PVC: Polyvinyl chloride.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For sanitary waste piping specialties to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTIONS

- A. Sanitary waste piping specialties shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary waste piping specialty components.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing, and marked for intended location and application.

2.2 CLEANOUTS

A. Cast-Iron Exposed Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASME A112.36.2M.
- 3. Size: Same as connected drainage piping
- 4. Body Material: Hubless, cast-iron soil pipe test tee as required to match connected piping.
- 5. Closure: Countersunk, brass plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.

B. Plastic Floor Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Plastic Oddities.
 - b. Sioux Chief Manufacturing Company, Inc.
 - c. Zurn Industries, LLC.
- 2. Size: Same as connected branch.
- 3. Body: PVC.
- 4. Closure Plug: PVC.
- 5. Riser: Drainage pipe fitting and riser to cleanout of same material as drainage piping.

2.3 ROOF FLASHING ASSEMBLIES

A. Roof Flashing Assemblies:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Acorn Engineering Company.
 - b. Thaler Metal Industries Ltd.
 - c. Zurn Industries, LLC.
- 2. Description: Manufactured assembly made of 4.0-lb/sq. ft., 0.0625-inch-thick, lead flashing collar and skirt extending at least 8 inches from pipe, with galvanized-steel boot reinforcement and counterflashing fitting.

- a. Open-Top Vent Cap: Without cap.
- b. Low-Silhouette Vent Cap: With vandal-proof vent cap.
- c. Extended Vent Cap: With field-installed, vandal-proof vent cap.

2.4 MISCELLANEOUS SANITARY DRAINAGE PIPING SPECIALTIES

A. Deep-Seal Traps:

- 1. Description: Cast-iron or bronze casting, with inlet and outlet matching connected piping and cleanout trap-seal primer valve connection.
- 2. Size: Same as connected waste piping.
 - a. NPS 2: 4-inch-minimum water seal.
 - b. NPS 2-1/2 and Larger: 5-inch-minimum water seal.

B. Floor-Drain, Trap-Seal Primer Fittings:

- 1. Description: Cast iron, with threaded inlet and threaded or spigot outlet, and trap-seal primer valve connection.
- 2. Size: Same as floor drain outlet with NPS 1/2 side inlet.

C. Air-Gap Fittings:

- 1. Standard: ASME A112.1.2, for fitting designed to ensure fixed, positive air gap between installed inlet and outlet piping.
- 2. Body: Bronze or cast iron.
- 3. Inlet: Opening in top of body.
- 4. Outlet: Larger than inlet.
- 5. Size: Same as connected waste piping and with inlet large enough for associated indirect waste piping.

2.5 MOTORS

- A. General requirements for motors are specified in Section 220513 "Common Motor Requirements for Plumbing Equipment."
 - 1. Motor Sizes: Minimum size as indicated. If not indicated, motor shall be large enough, so driven load will not require motor to operate in service factor range above 1.0.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Install cleanouts in aboveground piping and building drain piping according to the following, unless otherwise indicated:

- 1. Size same as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
- 2. Locate at each change in direction of piping greater than 45 degrees.
- 3. Locate at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
- 4. Locate at base of each vertical soil and waste stack.
- B. For floor cleanouts for piping below floors, install cleanout deck plates with top flush with finished floor.
- C. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- D. Install roof flashing assemblies on sanitary stack vents and vent stacks that extend through roof. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."
- E. Install deep-seal traps on floor drains and other waste outlets, if indicated.
- F. Install floor-drain, trap-seal primer fittings on inlet to floor drains that require trap-seal primer connection.
 - 1. Exception: Fitting may be omitted if trap has trap-seal primer connection.
 - 2. Size: Same as floor drain inlet.
- G. Install air-gap fittings on draining-type backflow preventers and on indirect-waste piping discharge into sanitary drainage system.
- H. Install sleeve and sleeve seals with each riser and stack passing through floors with waterproof membrane.

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Install piping adjacent to equipment to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FLASHING INSTALLATION

A. Comply with requirements in Section 076200 "Sheet Metal Flashing and Trim."

- B. Fabricate flashing from single piece unless large pans, sumps, or other drainage shapes are required.
- C. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching pipe size, with minimum length of 10 inches, and skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- D. Set flashing on floors and roofs in solid coating of bituminous cement.
- E. Secure flashing into sleeve and specialty clamping ring or device.
- F. Install flashing for piping passing through roofs with counterflashing or commercially made flashing fittings, according to Section 076200 "Sheet Metal Flashing and Trim."
- G. Extend flashing up vent pipe passing through roofs and turn down into pipe, or secure flashing into cast-iron sleeve having calking recess.

3.4 LABELING AND IDENTIFYING

- A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit.
 - 1. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections, and prepare test reports.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect field-assembled FOG disposal systems and their installation, including piping and electrical connections, and to assist in testing.

B. Tests and Inspections:

- 1. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
- 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

3.6 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319

SECTION 221319.13 - SANITARY DRAINS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Floor drains.

1.3 DEFINITIONS

- A. ABS: Acrylonitrile-butadiene styrene.
- B. FRP: Fiberglass-reinforced plastic.
- C. HDPE: High-density polyethylene.
- D. PE: Polyethylene.
- E. PP: Polypropylene.
- F. PVC: Polyvinyl chloride.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 DRAIN ASSEMBLIES

- A. Sanitary drains shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF 14 for plastic sanitary piping specialty components.

SANITARY DRAINS 221319.13 - 1

2.2 FLOOR DRAINS

A. Cast-Iron Floor Drains:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Watts; a Watts Water Technologies company.
 - c. Zurn Industries, LLC.
- 2. Standard: ASME A112.6.3.
- 3. Pattern: Floor drain.
- 4. Outlet: Bottom.
- 5. Top or Strainer Material: Bronze.
- 6. Top of Body and Strainer Finish: Polished bronze.
- 7. Top Shape: Round.
- 8. Top Loading Classification: Heavy Duty.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install floor drains at low points of surface areas to be drained. Set grates of drains flush with finished floor, unless otherwise indicated.
 - 1. Position floor drains for easy access and maintenance.
 - 2. Set floor drains below elevation of surrounding finished floor to allow floor drainage.
 - 3. Set with grates depressed according to the following drainage area radii:
 - a. Radius, 30 Inches or Less: Equivalent to 1 percent slope, but not less than 1/4-inch total depression.
 - b. Radius, 30 to 60 Inches: Equivalent to 1 percent slope.
 - c. Radius, 60 Inches or Larger: Equivalent to 1 percent slope, but not greater than 1-inch total depression.
 - 4. Install floor-drain flashing collar or flange, so no leakage occurs between drain and adjoining flooring.
 - a. Maintain integrity of waterproof membranes where penetrated.
 - 5. Install individual traps for floor drains connected to sanitary building drain, unless otherwise indicated.

SANITARY DRAINS 221319.13 - 2

3.2 CONNECTIONS

- A. Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for piping installation requirements. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Comply with requirements in Section 221319 "Sanitary Waste Piping Specialties" for backwater valves, air admittance devices and miscellaneous sanitary drainage piping specialties.
- C. Install piping adjacent to equipment to allow service and maintenance.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 LABELING AND IDENTIFYING

A. Distinguish among multiple units, inform operator of operational requirements, indicate safety and emergency precautions, and warn of hazards and improper operations, in addition to identifying unit. Nameplates and signs are specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221319.13

SANITARY DRAINS 221319.13 - 3

SECTION 221413 - FACILITY STORM DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipe, tube, and fittings.
- 2. Specialty pipe fittings.
- 3. Encasement for underground metal piping.

1.3 PERFORMANCE REQUIREMENTS

- A. Components and installation shall be capable of withstanding the following minimum working pressure unless otherwise indicated:
 - 1. Storm Drainage Piping: 10-foot head of water.

1.4 QUALITY ASSURANCE

- A. Piping materials shall bear label, stamp, or other markings of specified testing agency.
- B. Comply with NSF/ANSI 14, "Plastics Piping System Components and Related Materials," for plastic piping components. Include marking with "NSF-drain" for plastic drain piping and "NSF-sewer" for plastic sewer piping.

1.5 PROJECT CONDITIONS

- A. Interruption of Existing Storm-Drainage Service: Do not interrupt service to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary service according to requirements indicated:
 - 1. Notify Owner no fewer than two days in advance of proposed interruption of storm-drainage service.
 - 2. Do not proceed with interruption of storm-drainage service without Owner's written permission.

PART 2 - PRODUCTS

2.1 PIPING MATERIALS

A. Comply with requirements in "Piping Schedule" Article for applications of pipe, tube, fitting materials, and joining methods for specific services, service locations, and pipe sizes.

2.2 HUB-AND-SPIGOT, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 74, Service and Extra Heavy classes.
- B. Gaskets: ASTM C 564, rubber.
- C. Calking Materials: ASTM B 29, pure lead and oakum or hemp fiber.

2.3 HUBLESS, CAST-IRON SOIL PIPE AND FITTINGS

- A. Pipe and Fittings: ASTM A 888 or CISPI 301.
- B. CISPI, Hubless-Piping Couplings:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. ANACO-Husky.
 - b. Charlotte Pipe and Foundry Company.
 - c. MIFAB, Inc.
 - d. Mission Rubber Company, LLC; a division of MCP Industries.
 - 2. Standards: ASTM C 1277 and CISPI 310.
 - 3. Description: Stainless-steel corrugated shield with stainless-steel bands and tightening devices; and ASTM C 564, rubber sleeve with integral, center pipe stop.

2.4 PVC PIPE AND FITTINGS

- A. Solid-Wall PVC Pipe: ASTM D 2665, drain, waste, and vent.
- B. Cellular-Core PVC Pipe: ASTM F 891, Schedule 40.
- C. PVC Socket Fittings: ASTM D 2665, made to ASTM D 3311, drain, waste, and vent patterns and to fit Schedule 40 pipe.
- D. Adhesive Primer: ASTM F 656.
- E. Solvent Cement: ASTM D 2564.

2.5 SPECIALTY PIPE FITTINGS

A. Transition Couplings:

- 1. General Requirements: Fitting or device for joining piping with small differences in ODs or of different materials. Include end connections same size as and compatible with pipes to be joined.
- 2. Fitting-Type Transition Couplings: Manufactured piping coupling or specified-piping-system fitting.
- 3. Shielded, Nonpressure Transition Couplings:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) Cascade Waterworks Mfg. Co.
 - 2) Mission Rubber Company, LLC; a division of MCP Industries.
 - b. Standard: ASTM C 1460.
 - c. Description: Elastomeric or rubber sleeve with full-length, corrosion-resistant outer shield and corrosion-resistant-metal tension band and tightening mechanism on each end.

PART 3 - EXECUTION

3.1 EARTH MOVING

A. Comply with requirements for excavating, trenching, and backfilling specified in Section 312000 "Earth Moving."

3.2 PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations from layout are approved on coordination drawings.
- B. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.

- E. Install piping to permit valve servicing.
- F. Install piping at indicated slopes.
- G. Install piping free of sags and bends.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping to allow application of insulation.
- J. Make changes in direction for storm drainage piping using appropriate branches, bends, and long-sweep bends. Do not change direction of flow more than 90 degrees. Use proper size of standard increasers and reducers if pipes of different sizes are connected. Reducing size of drainage piping in direction of flow is prohibited.
- K. Lay buried building storm drainage piping beginning at low point of each system. Install true to grades and alignment indicated, with unbroken continuity of invert. Place hub ends of piping upstream. Install required gaskets according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements. Maintain swab in piping and pull past each joint as completed.
- L. Install storm drainage piping at the following minimum slopes unless otherwise indicated:
 - 1. Building Storm Drain: 2 percent downward in direction of flow for piping NPS 3 and smaller; 1 percent downward in direction of flow for piping NPS 4 and larger.
- M. Install cast-iron soil piping according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook," Chapter IV, "Installation of Cast Iron Soil Pipe and Fittings."
 - 1. Install encasement on underground piping according to ASTM A 674 or AWWA C105.
- N. Install aboveground PVC piping according to ASTM D 2665.
- O. Install underground PVC piping according to ASTM D 2321.
- P. Plumbing Specialties:
 - 1. Install cleanouts at grade and extend to where building storm drains connect to building storm sewers in storm drainage gravity-flow piping. Install cleanout fitting with closure plug inside the building in storm drainage force-main piping. Comply with requirements for cleanouts specified in Section 221423 "Storm Drainage Piping Specialties."
 - 2. Install drains in storm drainage gravity-flow piping. Comply with requirements for drains specified in Section 221423 "Storm Drainage Piping Specialties."
- Q. Do not enclose, cover, or put piping into operation until it is inspected and approved by authorities having jurisdiction.
- R. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."

- S. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 220517 "Sleeves and Sleeve Seals for Plumbing Piping."
- T. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 220518 "Escutcheons for Plumbing Piping."

3.3 JOINT CONSTRUCTION

- A. Hub-and-Spigot, Cast-Iron Soil Piping Gasketed Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for compression joints.
- B. Hub-and-Spigot, Cast-Iron Soil Piping Calked Joints: Join according to CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for lead-and-oakum calked joints.
- C. Hubless, Cast-Iron Soil Piping Coupled Joints: Join according to CISPI 310 and CISPI's "Cast Iron Soil Pipe and Fittings Handbook" for hubless-piping coupling joints.
- D. Plastic, Nonpressure-Piping, Solvent-Cemented Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following:
 - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements.
 - 2. PVC Piping: Join according to ASTM D 2855 and ASTM D 2665 Appendices.

3.4 SPECIALTY PIPE FITTING INSTALLATION

A. Transition Couplings:

- 1. Install transition couplings at joints of piping with small differences in ODs.
- 2. In Drainage Piping: Shielded, nonpressure transition couplings.
- 3. In Aboveground Force-Main Piping: Fitting-type transition couplings.
- 4. In Underground Force-Main Piping:
 - a. NPS 1-1/2 and Smaller: Fitting-type transition couplings.
 - b. NPS 2 and Larger: Pressure transition couplings.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hanger and support devices and installation specified in Section 220529 "Hangers and Supports for Plumbing Piping and Equipment."
 - 1. Install carbon-steel pipe hangers for horizontal piping in noncorrosive environments.
 - 2. Install carbon-steel pipe support clamps for vertical piping in noncorrosive environments.
 - 3. Vertical Piping: MSS Type 8 or Type 42, clamps.
 - 4. Individual, Straight, Horizontal Piping Runs:

- a. 100 Feet and Less: MSS Type 1, adjustable, steel clevis hangers.
- b. Longer Than 100 Feet: MSS Type 43, adjustable roller hangers.
- c. Longer Than 100 Feet if Indicated: MSS Type 49, spring cushion rolls.
- 5. Multiple, Straight, Horizontal Piping Runs 100 Feet or Longer: MSS Type 44, pipe rolls. Support pipe rolls on trapeze.
- 6. Base of Vertical Piping: MSS Type 52, spring hangers.
- B. Support horizontal piping and tubing within 12 inches of each fitting and coupling.
- C. Support vertical piping and tubing at base and at each floor.
- D. Rod diameter may be reduced one size for double-rod hangers, with 3/8-inch minimum rods.
- E. Install hangers for cast-iron soil piping with the following maximum horizontal spacing and minimum rod diameters:
 - 1. NPS 1-1/2 and NPS 2: 60 inches with 3/8-inch rod.
 - 2. NPS 3: 60 inches with 1/2-inch rod.
 - 3. NPS 4 and NPS 5: 60 inches with 5/8-inch rod.
 - 4. NPS 6 and NPS 8: 60 inches with 3/4-inch rod.
 - 5. NPS 10 and NPS 12: 60 inches with 7/8-inch rod.
 - 6. Spacing for 10-foot pipe lengths may be increased to 10 feet. Spacing for fittings is limited to 60 inches.
- F. Install supports for vertical cast-iron soil piping every 15 feet.
- G. Support piping and tubing not listed above according to MSS SP-69 and manufacturer's written instructions.

3.6 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
- B. Connect interior storm drainage piping to exterior storm drainage piping. Use transition fitting to join dissimilar piping materials.
- C. Connect storm drainage piping to roof drains and storm drainage specialties.
 - 1. Install test tees (wall cleanouts) in conductors near floor, and floor cleanouts with cover flush with floor.
 - 2. Comply with requirements for cleanouts and drains specified in Section 221423 "Storm Drainage Piping Specialties."
- D. Where installing piping adjacent to equipment, allow space for service and maintenance of equipment.
- E. Make connections according to the following unless otherwise indicated:

- 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment.
- 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment.

3.7 IDENTIFICATION

A. Identify exposed storm drainage piping. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.8 FIELD QUALITY CONTROL

- A. During installation, notify authorities having jurisdiction at least 24 hours before inspection must be made. Perform tests specified below in presence of authorities having jurisdiction.
 - 1. Roughing-in Inspection: Arrange for inspection of piping before concealing or closing-in after roughing-in.
 - 2. Final Inspection: Arrange for final inspection by authorities having jurisdiction to observe tests specified below and to ensure compliance with requirements.
- B. Reinspection: If authorities having jurisdiction find that piping will not pass test or inspection, make required corrections and arrange for reinspection.
- C. Reports: Prepare inspection reports and have them signed by authorities having jurisdiction.
- D. Test storm drainage piping according to procedures of authorities having jurisdiction or, in absence of published procedures, as follows:
 - 1. Test for leaks and defects in new piping and parts of existing piping that have been altered, extended, or repaired. If testing is performed in segments, submit separate report for each test, complete with diagram of portion of piping tested.
 - 2. Leave uncovered and unconcealed new, altered, extended, or replaced storm drainage piping until it has been tested and approved. Expose work that was covered or concealed before it was tested.
 - 3. Test Procedure: Test storm drainage piping on completion of roughing-in. Close openings in piping system and fill with water to point of overflow, but not less than 10-foot head of water. From 15 minutes before inspection starts until completion of inspection, water level must not drop. Inspect joints for leaks.
 - 4. Repair leaks and defects with new materials and retest piping, or portion thereof, until satisfactory results are obtained.
 - 5. Prepare reports for tests and required corrective action.

3.9 CLEANING

A. Clean interior of piping. Remove dirt and debris as work progresses.

- B. Protect drains during remainder of construction period to avoid clogging with dirt and debris and to prevent damage from traffic and construction work.
- C. Place plugs in ends of uncompleted piping at end of day and when work stops.

3.10 PIPING SCHEDULE

- A. Flanges and unions may be used on aboveground pressure piping unless otherwise indicated.
- B. Aboveground storm drainage piping NPS 6 and smaller shall be the following:
 - 1. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.
 - 2. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.
- C. Underground storm drainage piping NPS 6 and smaller shall be any of the following:
 - 1. Service class, cast-iron soil pipe and fittings; gaskets; and gasketed joints.
 - 2. Hubless, cast-iron soil pipe and fittings; CISPI, hubless-piping couplings; and coupled joints.
 - 3. Solid-wall PVC pipe, PVC socket fittings, and solvent-cemented joints.
 - 4. Dissimilar Pipe-Material Couplings: Shielded, nonpressure transition couplings.

END OF SECTION 221413

SECTION 221423 - STORM DRAINAGE PIPING SPECIALTIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Roof drains.
 - 2. Miscellaneous storm drainage piping specialties.
 - 3. Cleanouts.
 - 4. Flashing materials.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 QUALITY ASSURANCE

A. Drainage piping specialties shall bear label, stamp, or other markings of specified testing agency.

PART 2 - PRODUCTS

2.1 METAL ROOF DRAINS

- A. Cast-Iron, Large-Sump, General-Purpose Roof Drains RD-1, RD-2:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. MIFAB, Inc.
 - c. WATTS.
 - 2. Standard: ASME A112.6.4, for general-purpose roof drains.

- 3. Body Material: Cast iron.
- 4. Dimension of Body: Nominal 14-inch diameter.
- 5. Outlet: Bottom.
- 6. Underdeck Clamp: Required.
- 7. Dome Material: Cast iron or PE.
- 8. Water Dam: 2 inches high. Only required for over flow drain, RD-2.

2.2 MISCELLANEOUS STORM DRAINAGE PIPING SPECIALTIES

A. Conductor Nozzles:

- 1. Description: Bronze body with threaded inlet and bronze wall flange with mounting holes.
- 2. Size: Same as connected conductor.

2.3 CLEANOUTS

A. Wall Cleanouts:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. Tyler Pipe; a subsidiary of McWane Inc.
 - c. WATTS.
 - d. Zurn Industries, LLC.
- 2. Standard: ASME A112.36.2M, for cleanouts. Include wall access.
- 3. Size: Same as connected drainage piping.
- 4. Body Material: Hubless, cast-iron soil-pipe test tee as required to match connected piping.
- 5. Closure: Countersunk, plug.
- 6. Closure Plug Size: Same as or not more than one size smaller than cleanout size.
- 7. Wall Access: Round, deep, chrome-plated bronze cover plate with screw.
- 8. Wall Access: Round, nickel-bronze, copper-alloy, or stainless-steel wall-installation frame and cover.

2.4 FLASHING MATERIALS

- A. Copper Sheet: ASTM B 152/B 152M, 12 oz./sq. ft..
- B. Zinc-Coated Steel Sheet: ASTM A 653/A 653M, with 0.20 percent copper content and 0.04-inch minimum thickness unless otherwise indicated. Include G90 hot-dip galvanized, mill-phosphatized finish for painting if indicated.

- C. Elastic Membrane Sheet: ASTM D 4068, flexible, chlorinated polyethylene, 40-mil minimum thickness.
- D. Fasteners: Metal compatible with material and substrate being fastened.
- E. Metal Accessories: Sheet metal strips, clamps, anchoring devices, and similar accessory units required for installation; matching or compatible with material being installed.
- F. Solder: ASTM B 32, lead-free alloy.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install roof drains at low points of roof areas according to roof membrane manufacturer's written installation instructions.
 - 1. Install flashing collar or flange of roof drain to prevent leakage between drain and adjoining roofing. Maintain integrity of waterproof membranes where penetrated.
 - 2. Install expansion joints, if indicated, in roof drain outlets.
 - 3. Position roof drains for easy access and maintenance.
- B. Install conductor nozzles at exposed bottom of conductors where they spill onto grade.
- C. Install cleanouts in aboveground piping and building drain piping according to the following instructions unless otherwise indicated:
 - 1. Use cleanouts the same size as drainage piping up to NPS 4. Use NPS 4 for larger drainage piping unless larger cleanout is indicated.
 - 2. Locate cleanouts at each change in direction of piping greater than 45 degrees.
 - 3. Locate cleanouts at minimum intervals of 50 feet for piping NPS 4 and smaller and 100 feet for larger piping.
 - 4. Locate cleanouts at base of each vertical soil and waste stack.
- D. For cleanouts located in concealed piping, install cleanout wall access covers, of types indicated, with frame and cover flush with finished wall.
- E. Install wall cleanouts in vertical conductors. Install access door in wall if indicated.
- F. Install sleeve flashing device with each conductor passing through floors with waterproof membrane.

3.2 CONNECTIONS

A. Comply with requirements for piping specified in Section 221413 "Facility Storm Drainage Piping." Drawings indicate general arrangement of piping, fittings, and specialties.

3.3 FLASHING INSTALLATION

- A. Fabricate flashing from single piece of metal unless large pans, sumps, or other drainage shapes are required. Join flashing according to the following if required:
 - 1. Lead Sheets: Burn joints of 6.0-lb/sq. ft. lead sheets, 0.0938-inch thickness or thicker. Solder joints of 4.0-lb/sq. ft. lead sheets, 0.0625-inch thickness or thinner.
 - 2. Copper Sheets: Solder joints of copper sheets.
- B. Install sheet flashing on pipes, sleeves, and specialties passing through or embedded in floors and roofs with waterproof membrane.
 - 1. Pipe Flashing: Sleeve type, matching the pipe size, with a minimum length of 10 inches and with skirt or flange extending at least 8 inches around pipe.
 - 2. Sleeve Flashing: Flat sheet, with skirt or flange extending at least 8 inches around sleeve.
 - 3. Embedded Specialty Flashing: Flat sheet, with skirt or flange extending at least 8 inches around specialty.
- C. Set flashing on floors and roofs in solid coating of bituminous cement.
- D. Secure flashing into sleeve and specialty clamping ring or device.
- E. Fabricate and install flashing and pans, sumps, and other drainage shapes.

3.4 PROTECTION

- A. Protect drains during remainder of construction period to avoid clogging with dirt or debris and to prevent damage from traffic or construction work.
- B. Place plugs in ends of uncompleted piping at end of each day or when work stops.

END OF SECTION 221423

SECTION 223400 - FUEL-FIRED, DOMESTIC-WATER HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Commercial, power-vent, gas-fired, storage, domestic-water heaters.
- 2. Domestic-water heater accessories.

1.3 ACTION SUBMITTALS

A. Product Data: For each type and size of domestic-water heater indicated. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Product Certificates: For each type of commercial, gas-fired domestic-water heater, from manufacturer.
- B. Domestic-Water Heater Labeling: Certified and labeled by testing agency acceptable to authorities having jurisdiction.
- C. Warranty: Sample of special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For fuel-fired, domestic-water heaters to include in emergency, operation, and maintenance manuals.

1.6 QUALITY ASSURANCE

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

- B. ASHRAE/IESNA Compliance: Fabricate and label fuel-fired, domestic-water heaters to comply with ASHRAE/IESNA 90.1.
- C. NSF Compliance: Fabricate and label equipment components that will be in contact with potable water to comply with NSF 61 Annex G, "Drinking Water System Components Health Effects."

1.7 COORDINATION

A. Coordinate sizes and locations of concrete bases with actual equipment provided.

1.8 WARRANTY

- A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace components of fuel-fired, domestic-water heaters that fail in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures including storage tank and supports.
 - b. Faulty operation of controls.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal use.
 - 2. Warranty Periods: From date of Substantial Completion.
 - a. Commercial, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1) Storage Tank: Three years.
 - 2) Controls and Other Components: One year(s).

PART 2 - PRODUCTS

2.1 COMMERCIAL, GAS-FIRED, STORAGE, DOMESTIC-WATER HEATERS

- A. Commercial, Power-Vent, Gas-Fired, Storage, Domestic-Water Heaters:
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Lochinvar, LLC.
 - b. Rheem Manufacturing Company.
 - c. Smith, A. O. Corporation.
 - d. State Industries.
 - 2. Standard: ANSI Z21.10.3/CSA 4.3.

- 3. Storage-Tank Construction: Non-ASME-code steel with 150-psig working-pressure rating.
 - a. Tappings: Factory fabricated of materials compatible with tank. Attach tappings to tank before testing.
 - 1) NPS 2 and Smaller: Threaded ends according to ASME B1.20.1.
 - 2) NPS 2-1/2 and Larger: Flanged ends according to ASME B16.5 for steel and stainless-steel flanges and according to ASME B16.24 for copper and copper-alloy flanges.
 - b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
 - c. Lining: Glass complying with NSF 61 Annex G barrier materials for potable-water tank linings, including extending lining into and through tank fittings and outlets.
- 4. Factory-Installed Storage-Tank Appurtenances:
 - a. Anode Rod: Replaceable magnesium.
 - b. Dip Tube: Required unless cold-water inlet is near bottom of tank.
 - c. Drain Valve: Corrosion-resistant metal complying with ASSE 1005.
 - d. Insulation: Comply with ASHRAE/IESNA 90.1. Surround entire storage tank except connections and controls.
 - e. Jacket: Steel with enameled finish.
 - f. Burner: For use with power-vent, gas-fired, domestic-water heaters and natural-gas fuel.
 - g. Automatic Ignition: ANSI Z21.20/CSA C22.2 No. 199, electric, automatic, gasignition system.
 - h. Temperature Control: Adjustable thermostat.
 - i. Safety Controls: Automatic, high-temperature-limit and low-water cutoff devices or systems.
 - j. Combination Temperature-and-Pressure Relief Valves: ANSI Z21.22/CSA 4.4-M. Include one or more relief valves with total relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select one relief valve with sensing element that extends into storage tank.
- 5. Special Requirements: NSF 5 construction.
- 6. Power-Vent System: Exhaust fan, interlocked with burner.

2.2 DOMESTIC-WATER HEATER ACCESSORIES

- A. Domestic-Water Compression Tanks:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. AMTROL, Inc.

- b. Smith, A. O. Corporation.
- c. State Industries.
- 2. Description: Steel, pressure-rated tank constructed with welded joints and factory-installed butyl-rubber diaphragm. Include air precharge to minimum system-operating pressure at tank.

3. Construction:

- a. Tappings: Factory-fabricated steel, welded to tank before testing and labeling. Include ASME B1.20.1 pipe thread.
- b. Interior Finish: Comply with NSF 61 Annex G barrier materials for potable-water tank linings, including extending finish into and through tank fittings and outlets.
- c. Air-Charging Valve: Factory installed.
- B. Drain Pans: Corrosion-resistant metal with raised edge. Comply with ANSI/CSA LC 3. Include dimensions not less than base of domestic-water heater, and include drain outlet not less than NPS 3/4 with ASME B1.20.1 pipe threads or with ASME B1.20.7 garden-hose threads.
- C. Piping-Type Heat Traps: Field-fabricated piping arrangement according to ASHRAE/IESNA 90.1.
- D. Manifold Kits: Domestic-water heater manufacturer's factory-fabricated inlet and outlet piping for field installation, for multiple domestic-water heater installation. Include ball-type shutoff valves to isolate each domestic-water heater and calibrated balancing valves to provide balanced flow through each domestic-water heater.
- E. Comply with requirements for ball-type shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping".
 - 1. Comply with requirements for balancing valves specified in Section 221119 "Domestic Water Piping Specialties."
- F. Gas Shutoff Valves: ANSI Z21.15/CSA 9.1-M, manually operated. Furnish for installation in piping.
- G. Gas Pressure Regulators: ANSI Z21.18/CSA 6.3, appliance type. Include 1/2-psig pressure rating as required to match gas supply.
- H. Combination Temperature-and-Pressure Relief Valves: Include relieving capacity at least as great as heat input, and include pressure setting less than domestic-water heater working-pressure rating. Select relief valves with sensing element that extends into storage tank.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.
- I. Pressure Relief Valves: Include pressure setting less than domestic-water heater working-pressure rating.
 - 1. Gas-Fired, Domestic-Water Heaters: ANSI Z21.22/CSA 4.4-M.

- J. Vacuum Relief Valves: ANSI Z21.22/CSA 4.4-M.
- K. Domestic-Water Heater Stands: Manufacturer's factory-fabricated steel stand for floor mounting, capable of supporting domestic-water heater and water. Provide dimension that will support bottom of domestic-water heater a minimum of 18 inches above the floor.

2.3 SOURCE QUALITY CONTROL

- A. Hydrostatically test commercial domestic-water heaters and storage tanks to minimum of one and one-half times pressure rating before shipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 DOMESTIC-WATER HEATER INSTALLATION

- A. Commercial, Domestic-Water Heater Mounting: Install commercial domestic-water heaters on concrete base. Comply with requirements for concrete base specified in Section 033000 "Castin-Place Concrete".
 - 1. Exception: Omit concrete bases for commercial domestic-water heaters if installation on stand, bracket, suspended platform, or directly on floor is indicated.
 - 2. Maintain manufacturer's recommended clearances.
 - 3. Arrange units so controls and devices that require servicing are accessible.
 - 4. Install dowel rods to connect concrete base to concrete floor. Unless otherwise indicated, install dowel rods on 18-inch centers around the full perimeter of concrete base.
 - 5. For supported equipment, install epoxy-coated anchor bolts that extend through concrete base and anchor into structural concrete floor.
 - 6. Place and secure anchorage devices. Use setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 7. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 8. Anchor domestic-water heaters to substrate.
- B. Install domestic-water heaters level and plumb, according to layout drawings, original design, and referenced standards. Maintain manufacturer's recommended clearances. Arrange units so controls and devices needing service are accessible.
 - 1. Install shutoff valves on domestic-water-supply piping to domestic-water heaters and on domestic-hot-water outlet piping. Comply with requirements for shutoff valves specified in Section 220523.12 "Ball Valves for Plumbing Piping".
- C. Install gas-fired, domestic-water heaters according to NFPA 54.

- 1. Install gas shutoff valves on gas supply piping to gas-fired, domestic-water heaters without shutoff valves.
- 2. Install gas pressure regulators on gas supplies to gas-fired, domestic-water heaters without gas pressure regulators if gas pressure regulators are required to reduce gas pressure at burner.
- 3. Install automatic gas valves on gas supplies to gas-fired, domestic-water heaters if required for operation of safety control.
- 4. Comply with requirements for gas shutoff valves, gas pressure regulators, and automatic gas valves specified in Section 231123 "Facility Natural-Gas Piping".
- D. Install combination temperature-and-pressure relief valves in top portion of storage tanks. Use relief valves with sensing elements that extend into tanks. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- E. Install combination temperature-and-pressure relief valves in water piping for domestic-water heaters without storage. Extend commercial-water-heater relief-valve outlet, with drain piping same as domestic-water piping in continuous downward pitch, and discharge by positive air gap onto closest floor drain.
- F. Install water-heater drain piping as indirect waste to spill by positive air gap into open drains or over floor drains. Install hose-end drain valves at low points in water piping for domestic-water heaters that do not have tank drains. Comply with requirements for hose-end drain valves specified in Section 221119 "Domestic Water Piping Specialties."
- G. Install thermometer on outlet piping of domestic-water heaters. Comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- H. Assemble and install inlet and outlet piping manifold kits for multiple domestic-water heaters. Fabricate, modify, or arrange manifolds for balanced water flow through each domestic-water heater. Include shutoff valve and thermometer in each domestic-water heater inlet and outlet, and throttling valve in each domestic-water heater outlet. Comply with requirements for valves specified in Section 220523.12 "Ball Valves for Plumbing Piping" and comply with requirements for thermometers specified in Section 220519 "Meters and Gages for Plumbing Piping."
- I. Install piping-type heat traps on inlet and outlet piping of domestic-water heater storage tanks without integral or fitting-type heat traps.
- J. Fill domestic-water heaters with water.
- K. Charge domestic-water compression tanks with air.

3.2 CONNECTIONS

A. Comply with requirements for domestic-water piping specified in Section 221116 "Domestic Water Piping."

- B. Comply with requirements for gas piping specified in Section 231123 "Facility Natural-Gas Piping".
- C. Drawings indicate general arrangement of piping, fittings, and specialties.
- D. Where installing piping adjacent to fuel-fired, domestic-water heaters, allow space for service and maintenance of water heaters. Arrange piping for easy removal of domestic-water heaters.

3.3 IDENTIFICATION

A. Identify system components. Comply with requirements for identification specified in Section 220553 "Identification for Plumbing Piping and Equipment."

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Domestic-water heaters will be considered defective if they do not pass tests and inspections. Comply with requirements in Section 014000 "Quality Requirements" for retesting and reinspecting.
- C. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain commercial, gas-fired, storage domestic-water heaters.

END OF SECTION 223400

SECTION 224213.13 - COMMERCIAL WATER CLOSETS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Water closets.
- 2. Flushometer valves.
- 3. Toilet seats.
- 4. Supports.

1.3 DEFINITIONS

- A. Effective Flush Volume: Average of two reduced flushes and one full flush per fixture.
- B. Remote Water Closet: Located more than 30 feet from other drain line connections or fixture and where less than 1.5 drainage fixture units are upstream of the drain line connection.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for water closets.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.

1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than one of each type.

PART 2 - PRODUCTS

2.1 WALL-MOUNTED WATER CLOSETS

- A. Water Closets (WC-1, WC-1A WC-2A): Wall mounted, top spud, accessible.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Kohler Co.
 - b. Sloan Valve Company.
 - c. TOTO USA, INC.
 - d. Zurn Industries, LLC.
 - 2. Bowl:
 - a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
 - b. Material: Vitreous china.
 - c. Type: Siphon jet.
 - d. Style: Flushometer valve.
 - e. Height: Standard.
 - f. Rim Contour: Elongated.
 - g. Water Consumption: 1.28 gal. per flush.
 - h. Spud Size and Location: NPS 1-1/2; top.
 - 3. Support: Water closet carrier.
 - 4. Water-Closet Mounting Height: Standard, Child, Handicapped/elderly according to ICC/ANSI A117.1 (WC-2A).

2.2 FLUSHOMETER VALVES

- A. Solenoid-Actuator, Diaphragm Flushometer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Sloan Valve Company.
 - b. Zurn Industries, LLC.
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.
 - 4. Features: Include integral check stop and backflow-prevention device.

- 5. Material: Brass body with corrosion-resistant components.
- 6. Exposed Flushometer-Valve Finish: Chrome plated.
- 7. Panel Finish: Chrome plated or stainless steel.
- 8. Style: Exposed.
- 9. Actuator: Solenoid complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 10. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951, and listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 11. Consumption: 1.28 gal. per flush.
- 12. Minimum Inlet: NPS 1.
- 13. Minimum Outlet: NPS 1-1/4.

2.3 TOILET SEATS

A. Toilet Seats:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Kohler Co.
 - b. TOTO USA, INC.
 - c. Zurn Industries, LLC.
- 2. Standard: IAPMO/ANSI Z124.5.
- 3. Material: Plastic.
- 4. Type: Commercial (Standard).
- 5. Shape: Elongated rim, open front.
- 6. Hinge: Self-sustaining, check.
- 7. Hinge Material: Noncorroding metal.
- 8. Seat Cover: Not required.
- 9. Color: White.

2.4 SUPPORTS

A. Water Closet Carrier:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Zurn Industries, LLC.
- 2. Standard: ASME A112.6.1M.

3. Description: Waste-fitting assembly, as required to match drainage piping material and arrangement with faceplates, couplings gaskets, and feet; bolts and hardware matching fixture.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before water-closet installation.
- B. Examine walls and floors for suitable conditions where water closets will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Water-Closet Installation:

- 1. Install level and plumb according to roughing-in drawings.
- 2. Install accessible, wall-mounted water closets at mounting height for handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

- 1. Install supports, affixed to building substrate, for floor-mounted, back-outlet water closets.
- 2. Use carrier supports with waste-fitting assembly and seal.
- 3. Install wall-mounted, back-outlet water-closet supports with waste-fitting assembly and waste-fitting seals; and affix to building substrate.

C. Flushometer-Valve Installation:

- 1. Install flushometer-valve, water-supply fitting on each supply to each water closet.
- 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
- 3. Install actuators in locations that are easy for people with disabilities to reach.
- 4. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Install toilet seats on water closets.

E. Wall Flange and Escutcheon Installation:

- 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations and within cabinets and millwork.
- 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
- 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

F. Joint Sealing:

- 1. Seal joints between water closets and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
- 2. Match sealant color to water-closet color.
- 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect water closets with water supplies and soil, waste, and vent piping. Use size fittings required to match water closets.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to water closets, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust water closets and controls. Replace damaged and malfunctioning water closets, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. Clean water closets and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed water closets and fittings.
- C. Do not allow use of water closets for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.13

SECTION 224213.16 - COMMERCIAL URINALS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Urinals.
- 2. Flushometer valves.
- 3. Supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for urinals.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For flushometer valves and electronic sensors to include in operation and maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Flushometer-Valve Repair Kits: Equal to 10 percent of amount of each type installed, but no fewer than one of each type.

PART 2 - PRODUCTS

2.1 WALL-HUNG URINALS

- A. Urinals (U-1, U-1A): Wall hung, back outlet, siphon jet, accessible.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. FNW; Ferguson Enterprises, Inc.
 - c. Kohler Co.
 - d. Zurn Industries, LLC.

2. Fixture:

- a. Standards: ASME A112.19.2/CSA B45.1 and ASME A112.19.5.
- b. Material: Vitreous china.
- c. Type: Siphon jet with extended shields.
- d. Water Consumption: 0.125 gpf.
- e. Spud Size and Location: NPS 3/4; top.
- f. Outlet Size and Location: NPS 2; back.
- g. Color: White.

3. Waste Fitting:

- a. Standard: ASME A112.18.2/CSA B125.2 for coupling.
- b. Size: NPS 2.
- 4. Support: Type I Urinal Carrier with fixture support plates and coupling with seal and fixture bolts and hardware matching fixture.
- 5. Urinal Mounting Height: Standard Handicapped/elderly according to ICC A117.1.

2.2 URINAL FLUSHOMETER VALVES

- A. Solenoid-Actuator, Diaphragm Flushometer Valves:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Delany Products.
 - b. Sloan Valve Company.
 - c. Zurn Industries, LLC.
 - 2. Standard: ASSE 1037.
 - 3. Minimum Pressure Rating: 125 psig.

- 4. Features: Include integral check stop and backflow-prevention device.
- 5. Material: Brass body with corrosion-resistant components.
- 6. Exposed Flushometer-Valve Finish: Chrome plated.
- 7. Panel Finish: Chrome plated or stainless steel.
- 8. Style: Exposed.
- 9. Actuator: Solenoid complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
- 10. Trip Mechanism: Battery-powered electronic sensor complying with UL 1951; listed and labeled as defined in NFPA 70, by a qualified testing agency; and marked for intended location and application.
- 11. Consumption: 0.125 gal. per flush.
- 12. Minimum Inlet: NPS 3/4.
- 13. Minimum Outlet: NPS 3/4.

2.3 SUPPORTS

A. Type I Urinal Carrier:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. MIFAB, Inc.
 - c. WATTS.
- 2. Standard: ASME A112.6.1M.

B. Type II Urinal Carrier:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Jay R. Smith Mfg. Co.
 - b. MIFAB, Inc.
 - c. WATTS.
- 2. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before urinal installation.

- B. Examine walls and floors for suitable conditions where urinals will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Urinal Installation:

- 1. Install urinals level and plumb according to roughing-in drawings.
- 2. Install wall-hung, back-outlet urinals onto waste fitting seals and attached to supports.
- 3. Install accessible, wall-mounted urinals at mounting height for the handicapped/elderly, according to ICC/ANSI A117.1.

B. Support Installation:

- 1. Install supports, affixed to building substrate, for wall-hung urinals.
- 2. Use off-floor carriers with waste fitting and seal for back-outlet urinals.
- 3. Use carriers without waste fitting for urinals with tubular waste piping.
- 4. Use chair-type carrier supports with rectangular steel uprights for accessible urinals.

C. Flushometer-Valve Installation:

- 1. Install flushometer-valve water-supply fitting on each supply to each urinal.
- 2. Attach supply piping to supports or substrate within pipe spaces behind fixtures.
- 3. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

D. Wall Flange and Escutcheon Installation:

- 1. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations.
- 2. Install deep-pattern escutcheons if required to conceal protruding fittings.
- 3. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."

E. Joint Sealing:

- 1. Seal joints between urinals and walls and floors using sanitary-type, one-part, mildew-resistant silicone sealant.
- 2. Match sealant color to urinal color.
- 3. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect urinals with water supplies and soil, waste, and vent piping. Use size fittings required to match urinals.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."
- D. Where installing piping adjacent to urinals, allow space for service and maintenance.

3.4 ADJUSTING

- A. Operate and adjust urinals and controls. Replace damaged and malfunctioning urinals, fittings, and controls.
- B. Adjust water pressure at flushometer valves to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. Clean urinals and fittings with manufacturers' recommended cleaning methods and materials.
- B. Install protective covering for installed urinals and fittings.
- C. Do not allow use of urinals for temporary facilities unless approved in writing by Owner.

END OF SECTION 224213.16

SECTION 224216.13 - COMMERCIAL LAVATORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Lavatories.
 - 2. Faucets.
 - 3. Supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for lavatories.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
- B. Shop Drawings: Include diagrams for power, signal, and control wiring of automatic faucets.

1.4 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Counter cutout templates for mounting of counter-mounted lavatories.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For lavatories and faucets to include in operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Servicing and adjustments of automatic faucets.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 VITREOUS-CHINA, COUNTER-MOUNTED LAVATORIES

- A. Lavatory (L-1, L-2): Oval, self-rimming, vitreous china, counter mounted.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. TOTO USA, INC.
 - d. Zurn Industries, LLC.

2. Fixture:

- a. Standard: ASME A112.19.2/CSA B45.1.
- b. Type: Self-rimming for above-counter mounting.
- c. Nominal Size: Oval, 20 by 17 inches.
- d. Faucet-Hole Punching: Three holes, 2-inch centers.
- e. Faucet-Hole Location: Top.
- f. Color: White.
- g. Mounting Material: Sealant.

2.2 VITREOUS-CHINA, WALL-MOUNTED LAVATORIES

- A. Lavatory (L-3): Vitreous china, wall mounted, with back.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Sloan Valve Company.
 - d. Zurn Industries, LLC.

2. Fixture:

- a. Standard: ASME A112.19.2/CSA B45.1.
- b. Type: For wall hanging.
- c. Nominal Size: Oval, 20 by 18 inches.
- d. Faucet-Hole Punching: Three holes, 2-inch centers.
- e. Faucet-Hole Location: Top.
- f. Color: White.
- g. Mounting Material: Chair carrier.
- 3. Lavatory Mounting Height: Handicapped/elderly according to ICC A117.1.

2.3 SOLID-BRASS, MANUALLY OPERATED FAUCETS

- A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components Health Effects," for faucet materials that will be in contact with potable water.
- B. Lavatory Faucets (L-1): Manual-type, single-control mixing, commercial, solid-brass valve.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Moen Incorporated.
 - 2. Standard: ASME A112.18.1/CSA B125.1.
 - 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 - 4. Body Type: Centerset.
 - 5. Body Material: Commercial, solid brass.
 - 6. Finish: Polished chrome plate.
 - 7. Maximum Flow Rate: 0.5 gpm.
 - 8. Mounting Type: Deck, exposed.
 - 9. Valve Handle(s): Single lever.
 - 10. Spout: Rigid type.
 - 11. Spout Outlet: Aerator.
 - 12. Operation: Compression, manual.
 - 13. Drain: Not part of faucet.

2.4 SOLID-BRASS, AUTOMATICALLY OPERATED LAVATORY FAUCETS

- A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components Health Effects," for faucet materials that will be in contact with potable water.
- B. Lavatory Faucets (L-2): Automatic-type, battery-powered, electronic-sensor-operated, nonmixing, solid-brass valve.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Moen Incorporated.
- 2. Standards: ASME A112.18.1/CSA B125.1 and UL 1951.
- 3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
- 5. Body Type: Single hole.
- 6. Body Material: Commercial, solid brass.
- 7. Finish: Polished chrome plate.
- 8. Maximum Flow Rate: 0.5 gpm.
- 9. Maximum Fow: 0.25 gal per cycle.
- 10. Mounting Type: Deck, concealed.
- 11. Spout: Rigid type.
- 12. Spout Outlet: Aerator.
- 13. Drain: Not part of faucet.
- C. Lavatory Faucets (L-3): Automatic-type, battery-powered, electronic-sensor-operated, nonmixing, solid-brass valve.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Moen Incorporated.
 - 2. Standards: ASME A112.18.1/CSA B125.1 and UL 1951.
 - 3. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 4. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and fixture receptor.
 - 5. Body Type: Single hole.
 - 6. Body Material: Commercial, solid brass.
 - 7. Finish: Polished chrome plate.
 - 8. Maximum Flow Rate: 0.5 gpm.
 - 9. Maximum Fow: 0.25 gal per metering cycle.
 - 10. Mounting Type: Deck, concealed.
 - 11. Spout: Rigid, gooseneck type.
 - 12. Spout Outlet: Aerator.
 - 13. Drain: Not part of faucet.

2.5 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated-brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated-brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated-brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Wheel handle.
- F. Risers:
 - 1. NPS 3/8.
 - 2. Chrome-plated, soft-copper flexible tube or ASME A112.18.6, braided- or corrugated-stainless-steel, flexible hose riser.

2.6 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/4 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2 by NPS 1-1/4.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated, brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.7 SUPPORTS

- A. Type II Lavatory Carrier:
 - 1. Standard: ASME A112.6.1M.
- B. Type III Lavatory Carrier:
 - 1. Standard: ASME A112.6.1M.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before lavatory installation.
- B. Examine counters and walls for suitable conditions where lavatories will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install lavatories level and plumb according to roughing-in drawings.
- B. Install supports, affixed to building substrate, for wall-mounted lavatories.
- C. Install accessible wall-mounted lavatories at handicapped/elderly mounting height for people with disabilities or the elderly, according to ICC/ANSI A117.1.
- D. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- E. Seal joints between lavatories, counters, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- F. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible lavatories. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

A. Operate and adjust lavatories and controls. Replace damaged and malfunctioning lavatories, fittings, and controls.

- B. Adjust water pressure at faucets to produce proper flow.
- C. Install fresh batteries in battery-powered, electronic-sensor mechanisms.

3.5 CLEANING AND PROTECTION

- A. After completing installation of lavatories, inspect and repair damaged finishes.
- B. Clean lavatories, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed lavatories and fittings.
- D. Do not allow use of lavatories for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.13

SECTION 224216.16 - COMMERCIAL SINKS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Service basins.
- 2. Breakroom sinks.
- 3. Handwash sinks.
- 4. Sink faucets.
- 5. Supply fittings.
- 6. Waste fittings.
- 7. Supports.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for sinks.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For sinks to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 SERVICE BASINS

- A. Service Basins (JS-1): Terrazzo, floor mounted.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Acorn Engineering Company.
 - b. Crane Plumbing, L.L.C.
 - c. Florestone Products Co., Inc.
 - 2. Fixture:
 - a. Standard: IAPMO PS 99.
 - b. Shape: Square.
 - c. Nominal Size: 24 by 24 inches.
 - d. Height: 12 inches.
 - e. Tiling Flange: Not required.
 - f. Rim Guard: On front top surfaces.
 - g. Color: Not applicable.
 - h. Drain: Grid with NPS 2 outlet.
 - 3. Mounting: On floor and flush to wall.

2.2 BREAKROOM SINKS

- A. Breakroom Sinks (S-1): Two bowl, counter mounted, stainless steel.
 - 1. Stainless-Steel Kitchen Sinks:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Elkay Manufacturing Co.
 - 2) Kohler Co.
 - 3) Sterling.
 - 2. Fixture:
 - a. Standard: ASME A112.19.3/CSA B45.4 for stainless-steel kitchen sinks.
 - b. Overall Dimensions: 33" x 22" x 9".
 - c. Metal Thickness: 0.050 inch.

- d. Left Bowl:
 - 1) Dimensions: 14.75" x 16.75".
 - 2) Drain: 3-1/2-inch grid.
 - a) Location: Near back of bowl.
- e. Right Bowl:
 - 1) Dimensions: 14.75" x 16.75".
 - 2) Drain: 3-1/2-inch grid.
 - a) Location: Near back of bowl.
- 3. Supply Fittings: Comply with requirements in "Supply Fittings" Article.
- 4. Waste Fittings: Comply with requirements in "Waste Fittings" Article, except include continuous waste for multi-bowl sinks.

2.3 HANDWASH SINKS

- A. Handwash Sinks (KS-3): Stainless steel, wall mounted.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Elkay Manufacturing Co.
 - b. Griffin Products, Inc.
 - c. Sloan Valve Company.
 - 2. Fixture:
 - a. Standards: ASME A112.19.3/CSA B45.4 and NSF/ANSI 2.
 - b. Type: Basin with radius corners, back for faucet, and support brackets.
 - c. Nominal Size: 17 by 16 by 5 inches.
 - 3. Supply Fittings: Comply with requirements in "Supply Fittings" Article.
 - 4. Waste Fittings: Comply with requirements in "Waste Fittings" Article.
 - 5. Support: Type II sink carrier.
 - 6. Lavatory Mounting Height: Standard.

2.4 SINK FAUCETS

A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components - Health Effects," for faucet-spout materials that will be in contact with potable water.

- B. Sink Faucets (S-1): Breakroom sink faucet.
 - 1. General-Duty, Solid-Brass Faucets:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) American Standard America.
 - 2) Delta Faucet Company.
 - 3) Elkay Manufacturing Co.
 - 2. Standard: ASME A112.18.1/CSA B125.1.
 - 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 - 4. Kitchen Sink Option: Pull down spray faucet.
 - 5. Finish: Polished chrome plate.
 - 6. Maximum Flow Rate: 1.5 gpm unless otherwise indicated.
 - 7. Mixing Valve: Single control.
 - 8. Backflow-Prevention Device for Hand Spray: Not required.
 - 9. Centers: Single hole.
 - 10. Mounting: Deck.
 - 11. Handle(s): Lever.
 - 12. Spout Type: Swivel gooseneck with pull down spray faucet.
 - 13. Spout Outlet: Swivel aerator/spray.
- C. Sink Faucets (JS-1): Mop sink faucet.
 - 1. General-Duty, Solid-Brass Faucets:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) American Standard America.
 - 2) Delta Faucet Company.
 - 3) Elkay Manufacturing Co.
 - 2. Standard: ASME A112.18.1/CSA B125.1.
 - 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture holes; coordinate outlet with spout and fixture receptor.
 - 4. Faucet Type: Service/utility wall mount faucet with quarter turn ceramic disc valve, two faucet holes, wall support, and bucket hook
 - 5. Finish: Polished chrome plate.
 - 6. Maximum Flow Rate: 4.0gpm unless otherwise indicated.
 - 7. Mixing Valve: Single control.
 - 8. Mounting: Wall.
 - 9. Handle(s): Dual lever.
 - 10. Spout Type: Rigid gooseneck with wall support.

- 11. Spout Outlet: Threaded hose connection.
- D. Sink Faucets (KS-3): Manual type, two-lever-handle mixing valve.
 - 1. Commercial, Solid-Brass Faucets.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Kohler Co.
 - 2) Moen Incorporated.
 - 3) Zurn Industries, LLC.
 - 2. Standard: ASME A112.18.1/CSA B125.1.
 - 3. General: Include hot- and cold-water indicators; coordinate faucet inlets with supplies and fixture hole punchings; coordinate outlet with spout and sink receptor.
 - 4. Body Type: Centerset.
 - 5. Body Material: Commercial, solid brass.
 - 6. Finish: Chrome plated.
 - 7. Maximum Flow Rate: 2.2 gpm.
 - 8. Handle(s): Wrist blade, 4 inches.
 - 9. Mounting Type: Back/wall, exposed.
 - 10. Spout Type: Rigid gooseneck.
 - 11. Spout Outlet: Aerator.

2.5 SUPPORTS

- A. Type II Sink Carrier:
 - 1. Standard: ASME A112.6.1M.

2.6 SUPPLY FITTINGS

- A. NSF Standard: Comply with NSF/ANSI 61 Annex G, "Drinking Water System Components Health Effects," for supply-fitting materials that will be in contact with potable water.
- B. Standard: ASME A112.18.1/CSA B125.1.
- C. Supply Piping: Chrome-plated brass pipe or chrome-plated copper tube matching water-supply piping size. Include chrome-plated brass or stainless-steel wall flange.
- D. Supply Stops: Chrome-plated brass, one-quarter-turn, ball-type or compression valve with inlet connection matching supply piping.
- E. Operation: Wheel handle.

F. Risers:

- 1. NPS 3/8.
- 2. Chrome-plated, soft-copper flexible tube or ASME A112.18.6, braided or corrugated stainless-steel flexible hose.

2.7 WASTE FITTINGS

- A. Standard: ASME A112.18.2/CSA B125.2.
- B. Drain: Grid type with NPS 1-1/2 offset and straight tailpiece.
- C. Trap:
 - 1. Size: NPS 1-1/2.
 - 2. Material: Chrome-plated, two-piece, cast-brass trap and swivel elbow with 0.032-inch-thick brass tube to wall; and chrome-plated brass or steel wall flange.
 - 3. Material: Stainless-steel, two-piece trap and swivel elbow with 0.012-inch-thick stainless-steel tube to wall; and stainless-steel wall flange.

2.8 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in of water supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before sink installation.
- B. Examine walls, floors, and counters for suitable conditions where sinks will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Install sinks level and plumb according to roughing-in drawings.

- B. Install supports, affixed to building substrate, for wall-hung sinks.
- C. Install accessible wall-mounted sinks at handicapped/elderly mounting height according to ICC/ANSI A117.1.
- D. Set floor-mounted sinks in leveling bed of cement grout.
- E. Install water-supply piping with stop on each supply to each sink faucet.
 - 1. Exception: Use ball or gate valves if supply stops are not specified with sink. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping".
 - 2. Install stops in locations where they can be easily reached for operation.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between sinks and counters, floors, and walls using sanitary-type, one-part, mildewresistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."
- H. Install protective shielding pipe covers and enclosures on exposed supplies and waste piping of accessible sinks. Comply with requirements in Section 220719 "Plumbing Piping Insulation."

3.3 CONNECTIONS

- A. Connect sinks with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust sinks and controls. Replace damaged and malfunctioning sinks, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of sinks, inspect and repair damaged finishes.
- B. Clean sinks, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.

- C. Provide protective covering for installed sinks and fittings.
- D. Do not allow use of sinks for temporary facilities unless approved in writing by Owner.

END OF SECTION 224216.16

SECTION 224223 - COMMERCIAL SHOWERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Individual shower receptors.
- 2. Shower faucets.
- 3. Grout.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for showers.
 - 2. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For shower faucets to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Faucet Washers and O-Rings: Equal to 10 percent of amount of each type and size installed.
 - 2. Faucet Cartridges and O-Rings: Equal to 5 percent of amount of each type and size installed.

PART 2 - PRODUCTS

2.1 INDIVIDUAL SHOWERS

A. Individual FRP Showers (SH-1):

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Praxis Industries, LLC.
 - b. Sterling.
 - c. Swan Corporation (The).
- 2. General: FRP, accessible (SH-1A only), shower enclosure with faucet and receptor and appurtenances.
- 3. Standard: ANSI Z124.1.2.
- 4. Type: One-piece unit.
- 5. Style: Standard residential, Handicapped/wheelchair (SH-1A only).
- 6. Nominal Size and Shape: 36 by 36 inches square.
- 7. Color: White.
- 8. Bathing Surface: Slip resistant according to ASTM F 462.
- 9. Outlet: Drain with NPS 2 outlet.
- 10. Shower Rod and Curtain: Required (see architectural plans).
- 11. Grab Bar: ASTM F 446, mounted on support area back wall.
- 12. Shower Seat: Required (SH-1A only).

2.2 SHOWER FAUCETS

A. NSF Standard: Comply with NSF 61 Annex G, "Drinking Water System Components - Health Effects," for shower materials that will be in contact with potable water.

B. Shower Faucets:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. American Standard America.
 - b. Kohler Co.
 - c. Moen Incorporated.
 - d. Sloan Valve Company.
 - e. Zurn Industries, LLC.
- 2. Description: Single-handle, pressure-balance mixing valve with hot- and cold-water indicators; check stops; and shower head.

3. Faucet:

- a. Standards: ASME A112.18.1/CSA B125.1 and ASSE 1016.
- b. Body Material: Solid brass.
- c. Finish: Polished chrome plate.
- d. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
- e. EPA WaterSense: Required.
- f. Mounting: Exposed.
- g. Operation: Single-handle, twist or rotate control.
- h. Antiscald Device: Integral with mixing valve.
- i. Check Stops: Check-valve type, integral with or attached to body; on hot- and cold-water supply connections.
- 4. Supply Connections: NPS 1/2.

5. Shower Head:

- a. Standard: ASME A112.18.1/CSA B125.1.
- b. Type: Ball joint with arm and flange.
- c. Shower Head Material: Metallic with chrome-plated finish.
- d. Spray Pattern: Adjustable.
- e. Integral Volume Control: Required.
- f. Shower-Arm, Flow-Control Fitting: 1.5 gpm.
- g. Temperature Indicator: Not required.
- h. ADA fixtures (SH-1A only):
 - 1) Wall/hand shower with 5 foot flexible metal hose with in-line vacuum breaker, wall connection and flange.
 - 2) 30 inch slide bar for hand shower mounting.

2.3 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Examine roughing-in of water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before shower installation.

- B. Examine walls and floors for suitable conditions where showers will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Assemble shower components according to manufacturers' written instructions.
- B. Install showers level and plumb according to roughing-in drawings.
- C. Install water-supply piping with stop on each supply to each shower faucet.
 - 1. Exception: Use ball valves if supply stops are not specified with shower. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping".
 - 2. Install stops in locations where they can be easily reached for operation.
- D. Install shower flow-control fittings with specified maximum flow rates in shower arms.
- E. Set shower receptors in leveling bed of cement grout.
- F. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons if required to conceal protruding fittings. Comply with escutcheons requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- G. Seal joints between showers and floors and walls using sanitary-type, one-part, mildew-resistant silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."
- C. Comply with traps and soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Operate and adjust showers and controls. Replace damaged and malfunctioning showers, fittings, and controls.
- B. Adjust water pressure at faucets to produce proper flow.

3.5 CLEANING AND PROTECTION

- A. After completing installation of showers, inspect and repair damaged finishes.
- B. Clean showers, faucets, and other fittings with manufacturers' recommended cleaning methods and materials.
- C. Provide protective covering for installed fixtures and fittings.
- D. Do not allow use of showers for temporary facilities unless approved in writing by Owner.

SECTION 224716 - PRESSURE WATER COOLERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes pressure water coolers and related components.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of pressure water cooler.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.4 CLOSEOUT SUBMITTALS

A. Maintenance Data: For pressure water coolers to include in maintenance manuals.

1.5 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filter Cartridges: Equal to 100 percent of quantity installed for each type and size indicated.

PART 2 - PRODUCTS

2.1 PRESSURE WATER COOLERS

A. Pressure Water Coolers: Wall mounted, standard, wheelchair accessible.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Elkay Manufacturing Co.
 - b. Halsey Taylor.
 - c. Haws Corporation.

2. Standards:

- a. Comply with NSF 61 Annex G.
- b. Comply with ASHRAE 34, "Designation and Safety Classification of Refrigerants," for water coolers. Provide HFC 134a (tetrafluoroethane) refrigerant unless otherwise indicated.
- 3. Cabinet: Bi-level with two attached cabinets, all stainless steel.
- 4. Bubbler: One, with adjustable stream regulator, located on each cabinet deck.
- 5. Control: Push bar.
- 6. Drain: Grid with NPS 1-1/4 tailpiece.
- 7. Supply: NPS 3/8 with shutoff valve.
- 8. Waste Fitting: ASME A112.18.2/CSA B125.2, NPS 1-1/4 brass P-trap.
- 9. Filter: One or more water filters complying with NSF 42 and NSF 53 for cyst and lead reduction to below EPA standards; with capacity sized for unit peak flow rate.
- 10. Cooling System: Electric, with hermetically sealed compressor, cooling coil, air-cooled condensing unit, corrosion-resistant tubing, refrigerant, corrosion-resistant-metal storage tank, and adjustable thermostat.
 - a. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 11. Capacities and Characteristics:
 - a. Cooled Water: 8 gph.
 - b. Ambient-Air Temperature: 90 deg F.
 - c. Inlet-Water Temperature: 80 deg F.
 - d. Cooled-Water Temperature: 50 deg F.
 - e. Electrical Characteristics:
 - 1) Volts: 120-V ac.
 - 2) Phase: Single.
 - 3) Hertz: 60.
- 12. Support: Type I Water Cooler Carrier.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for water-supply and sanitary drainage and vent piping systems to verify actual locations of piping connections before fixture installation.
- B. Examine walls and floors for suitable conditions where fixtures will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install fixtures level and plumb according to roughing-in drawings. For fixtures indicated for children, install at height required by authorities having jurisdiction.
- B. Set freestanding pressure water coolers on floor.
- C. Install off-the-floor carrier supports, affixed to building substrate, for wall-mounted fixtures.
- D. Install mounting frames, affixed to building construction, and attach recessed, pressure water coolers to mounting frames.
- E. Install water-supply piping with shutoff valve on supply to each fixture to be connected to domestic-water distribution piping. Use ball valve. Install valves in locations where they can be easily reached for operation. Valves are specified in Section 220523.12 "Ball Valves for Plumbing Piping".
- F. Install trap and waste piping on drain outlet of each fixture to be connected to sanitary drainage system.
- G. Install wall flanges or escutcheons at piping wall penetrations in exposed, finished locations. Use deep-pattern escutcheons where required to conceal protruding fittings. Comply with escutcheon requirements specified in Section 220518 "Escutcheons for Plumbing Piping."
- H. Seal joints between fixtures and walls using sanitary-type, one-part, mildew-resistant, silicone sealant. Match sealant color to fixture color. Comply with sealant requirements specified in Section 079200 "Joint Sealants."

3.3 CONNECTIONS

- A. Connect fixtures with water supplies, stops, and risers, and with traps, soil, waste, and vent piping. Use size fittings required to match fixtures.
- B. Comply with water piping requirements specified in Section 221116 "Domestic Water Piping."

- C. Install ball shutoff valve on water supply to each fixture. Install valve upstream from filter for water cooler. Comply with valve requirements specified in Section 220523.12 "Ball Valves for Plumbing Piping".
- D. Comply with soil and waste piping requirements specified in Section 221316 "Sanitary Waste and Vent Piping."

3.4 ADJUSTING

- A. Adjust fixture flow regulators for proper flow and stream height.
- B. Adjust pressure water-cooler temperature settings.

3.5 CLEANING

- A. After installing fixture, inspect unit. Remove paint splatters and other spots, dirt, and debris. Repair damaged finish to match original finish.
- B. Clean fixtures, on completion of installation, according to manufacturer's written instructions.
- C. Provide protective covering for installed fixtures.
- D. Do not allow use of fixtures for temporary facilities unless approved in writing by Owner.

SECTION 230513 - COMMON MOTOR REQUIREMENTS FOR HVAC EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes general requirements for single-phase and polyphase, general-purpose, horizontal, small and medium, squirrel-cage induction motors for use on ac power systems up to 600 V and installed at equipment manufacturer's factory or shipped separately by equipment manufacturer for field installation.

1.3 COORDINATION

- A. Coordinate features of motors, installed units, and accessory devices to be compatible with the following:
 - 1. Motor controllers.
 - 2. Torque, speed, and horsepower requirements of the load.
 - 3. Ratings and characteristics of supply circuit and required control sequence.
 - 4. Ambient and environmental conditions of installation location.

PART 2 - PRODUCTS

2.1 GENERAL MOTOR REQUIREMENTS

- A. Comply with NEMA MG 1 unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.

2.2 MOTOR CHARACTERISTICS

- A. Duty: Continuous duty at ambient temperature of 40 deg C and at altitude of 3300 feet above sea level.
- B. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.

2.3 POLYPHASE MOTORS

- A. Description: NEMA MG 1, Design B, medium induction motor.
- B. Efficiency: Energy efficient, as defined in NEMA MG 1.
- C. Service Factor: 1.15.
- D. Multispeed Motors: Variable torque.
 - 1. For motors with 2:1 speed ratio, consequent pole, single winding.
 - 2. For motors with other than 2:1 speed ratio, separate winding for each speed.
- E. Multispeed Motors: Separate winding for each speed.
- F. Rotor: Random-wound, squirrel cage.
- G. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- H. Temperature Rise: Match insulation rating.
- I. Insulation: Class F.
- J. Code Letter Designation:
 - 1. Motors 15 HP and Larger: NEMA starting Code F or Code G.
 - 2. Motors Smaller than 15 HP: Manufacturer's standard starting characteristic.
- K. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.

2.4 POLYPHASE MOTORS WITH ADDITIONAL REQUIREMENTS

- A. Motors Used with Variable Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short time rise pulses produced by pulse-width modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
- B. Severe-Duty Motors: Comply with IEEE 841, with 1.15 minimum service factor.

2.5 SINGLE-PHASE MOTORS

- A. Motors larger than 1/20 hp shall be one of the following, to suit starting torque and requirements of specific motor application:
 - 1. Permanent-split capacitor.
- B. Multispeed Motors: Variable-torque, permanent-split-capacitor type.
- C. Bearings: Prelubricated, antifriction ball bearings or sleeve bearings suitable for radial and thrust loading.
- D. Motors 1/20 HP and Smaller: Shaded-pole type.
- E. Thermal Protection: Internal protection to automatically open power supply circuit to motor when winding temperature exceeds a safe value calibrated to temperature rating of motor insulation. Thermal-protection device shall automatically reset when motor temperature returns to normal range.

PART 3 - EXECUTION (Not Applicable)

SECTION 230517 - SLEEVES AND SLEEVE SEALS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Sleeves.
 - 2. Grout.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 SLEEVES

A. Galvanized-Steel-Pipe Sleeves: ASTM A 53/A 53M, Type E, Grade B, Schedule 40, zinc coated, with plain ends.

2.2 GROUT

- A. Standard: ASTM C 1107/C 1107M, Grade B, post-hardening and volume-adjusting, dry, hydraulic-cement grout.
- B. Characteristics: Nonshrink; recommended for interior and exterior applications.
- C. Design Mix: 5000-psi, 28-day compressive strength.
- D. Packaging: Premixed and factory packaged.

PART 3 - EXECUTION

3.1 SLEEVE INSTALLATION

- A. Install sleeves for piping passing through penetrations in floors, partitions, roofs, and walls.
- B. For sleeves that will have sleeve-seal system installed, select sleeves of size large enough to provide 1-inch annular clear space between piping and concrete slabs and walls.
 - 1. Sleeves are not required for core-drilled holes.
- C. Install sleeves in concrete floors, concrete roof slabs, and concrete walls as new slabs and walls are constructed.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Using grout, seal the space outside of sleeves in slabs and walls without sleeve-seal system.
- D. Install sleeves for pipes passing through interior partitions.
 - 1. Cut sleeves to length for mounting flush with both surfaces.
 - 2. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation.
 - 3. Seal annular space between sleeve and piping or piping insulation; use joint sealants appropriate for size, depth, and location of joint. Comply with requirements for sealants specified in Section 079200 "Joint Sealants."

3.2 SLEEVE-SEAL-SYSTEM INSTALLATION

- A. Install sleeve-seal systems in sleeves in exterior concrete walls and slabs-on-grade at service piping entries into building.
- B. Select type, size, and number of sealing elements required for piping material and size and for sleeve ID or hole size. Position piping in center of sleeve. Center piping in penetration, assemble sleeve-seal system components, and install in annular space between piping and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make a watertight seal.

3.3 SLEEVE AND SLEEVE-SEAL SCHEDULE

- A. Use sleeves and sleeve seals for the following piping-penetration applications:
 - 1. Exterior Concrete Walls above Grade:
 - a. Piping Smaller Than NPS 6Galvanized-steel-pipe sleeves.

- 2. Concrete Slabs above Grade:
 - a. Piping Smaller Than NPS 6: Galvanized-steel-pipe sleeves.
- 3. Interior Partitions:
 - a. Piping Smaller Than NPS 6 Galvanized-steel-pipe sleeves.

SECTION 230518 - ESCUTCHEONS FOR HVAC PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Escutcheons.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

PART 2 - PRODUCTS

2.1 ESCUTCHEONS

- A. One-Piece, Deep-Pattern Type: Deep-drawn, box-shaped brass with chrome-plated finish and spring-clip fasteners.
- B. One-Piece, Stamped-Steel Type: With chrome-plated finish and spring-clip fasteners.
- C. Split-Casting Brass Type: With polished, chrome-plated finish and with concealed hinge and setscrew.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install escutcheons for piping penetrations of walls, ceilings, and finished floors.
- B. Install escutcheons with ID to closely fit around pipe, tube, and insulation of piping and with OD that completely covers opening.
 - 1. Escutcheons for New Piping:

- a. Piping with Fitting or Sleeve Protruding from Wall: One-piece, deep-pattern type.
- b. Insulated Piping: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
- c. Bare Piping at Wall and Floor Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
- d. Bare Piping at Ceiling Penetrations in Finished Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.
- e. Bare Piping in Unfinished Service Spaces: One-piece, stamped-steel type or split-plate, stamped-steel type with concealed hinge.

3.2 FIELD QUALITY CONTROL

A. Replace broken and damaged escutcheons and floor plates using new materials.

SECTION 230529 - HANGERS AND SUPPORTS FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal pipe hangers and supports.
- 2. Trapeze pipe hangers.
- 3. Metal framing systems.
- 4. Thermal-hanger shield inserts.
- 5. Fastener systems.
- 6. Pipe stands.
- 7. Equipment supports.

B. Related Sections:

1. Section 233113 "Metal Ducts" and Section 233716 "Fabric Air-Distribution Devices" for duct hangers and supports.

1.3 DEFINITIONS

A. MSS: Manufacturers Standardization Society of the Valve and Fittings Industry Inc.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

1.6 QUALITY ASSURANCE

A. Structural Steel Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code - Steel."

B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.

PART 2 - PRODUCTS

2.1 METAL PIPE HANGERS AND SUPPORTS

- A. Carbon-Steel Pipe Hangers and Supports:
 - 1. Description: MSS SP-58, Types 1 through 58, factory-fabricated components.
 - 2. Galvanized Metallic Coatings: Pregalvanized or hot dipped.
 - 3. Nonmetallic Coatings: Plastic coating, jacket, or liner.
 - 4. Padded Hangers: Hanger with fiberglass or other pipe insulation pad or cushion to support bearing surface of piping.
 - 5. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.

2.2 TRAPEZE PIPE HANGERS

A. Description: MSS SP-69, Type 59, shop- or field-fabricated pipe-support assembly made from structural carbon-steel shapes with MSS SP-58 carbon-steel hanger rods, nuts, saddles, and U-bolts.

2.3 METAL FRAMING SYSTEMS

- A. MFMA Manufacturer Metal Framing Systems:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. B-line, an Eaton business.
 - b. Flex-Strut Inc.
 - c. G-Strut.
 - 2. Description: Shop- or field-fabricated pipe-support assembly for supporting multiple parallel pipes.
 - 3. Standard: MFMA-4.
 - 4. Channels: Continuous slotted steel channel with inturned lips.
 - 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
 - 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of carbon steel.
 - 7. Metallic Coating: Hot-dipped galvanized.

2.4 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

2.5 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.
- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.

D. High-Type, Single-Pipe Stand:

- 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
- 2. Base: Stainless steel.
- 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods
- 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.

E. High-Type, Multiple-Pipe Stand:

- 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
- 2. Bases: One or more; plastic.
- 3. Vertical Members: Two or more protective-coated-steel channels.
- 4. Horizontal Member: Protective-coated-steel channel.
- 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.6 EQUIPMENT SUPPORTS

A. Description: Welded, shop- or field-fabricated equipment support made from structural carbon-steel shapes.

2.7 MISCELLANEOUS MATERIALS

- A. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; black and galvanized.
- B. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.

PART 3 - EXECUTION

3.1 HANGER AND SUPPORT INSTALLATION

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Trapeze Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Arrange for grouping of parallel runs of horizontal piping, and support together on field-fabricated trapeze pipe hangers.
 - 1. Pipes of Various Sizes: Support together and space trapezes for smallest pipe size or install intermediate supports for smaller diameter pipes as specified for individual pipe hangers.
 - 2. Field fabricate from ASTM A 36/A 36M, carbon-steel shapes selected for loads being supported. Weld steel according to AWS D1.1/D1.1M.
- C. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- D. Thermal-Hanger Shield Installation: Install in pipe hanger or shield for insulated piping.
- E. Fastener System Installation:
 - 1. Install powder-actuated fasteners for use in lightweight concrete or concrete slabs less than 4 inches thick in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
 - 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.

F. Pipe Stand Installation:

1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.

- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- G. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- H. Equipment Support Installation: Fabricate from welded-structural-steel shapes.
- I. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- J. Install lateral bracing with pipe hangers and supports to prevent swaying.
- K. Install building attachments within concrete slabs or attach to structural steel. Install additional attachments at concentrated loads, including valves, flanges, and strainers, NPS 2-1/2 and larger and at changes in direction of piping. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.
- L. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- M. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- N. Insulated Piping:
 - 1. Attach clamps and spacers to piping.
 - a. Piping Operating above Ambient Air Temperature: Clamp may project through insulation.
 - b. Do not exceed pipe stress limits allowed by ASME B31.9 for building services piping.
 - 2. Install MSS SP-58, Type 39, protection saddles if insulation without vapor barrier is indicated. Fill interior voids with insulation that matches adjoining insulation.
 - 3. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 4. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
 - 5. Thermal-Hanger Shields: Install with insulation same thickness as piping insulation.

3.2 EQUIPMENT SUPPORTS

- A. Fabricate structural-steel stands to suspend equipment from structure overhead or to support equipment above floor.
- B. Grouting: Place grout under supports for equipment and make bearing surface smooth.
- C. Provide lateral bracing, to prevent swaying, for equipment supports.

3.3 METAL FABRICATIONS

- A. Cut, drill, and fit miscellaneous metal fabrications for trapeze pipe hangers and equipment supports.
- B. Fit exposed connections together to form hairline joints. Field weld connections that cannot be shop welded because of shipping size limitations.
- C. Field Welding: Comply with AWS D1.1/D1.1M procedures for shielded, metal arc welding; appearance and quality of welds; and methods used in correcting welding work; and with the following:
 - 1. Use materials and methods that minimize distortion and develop strength and corrosion resistance of base metals.
 - 2. Obtain fusion without undercut or overlap.
 - 3. Remove welding flux immediately.
 - 4. Finish welds at exposed connections so no roughness shows after finishing and so contours of welded surfaces match adjacent contours.

3.4 ADJUSTING

- A. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- B. Trim excess length of continuous-thread hanger and support rods to 1-1/2 inches.

3.5 PAINTING

- A. Touchup: Clean field welds and abraded areas of shop paint. Paint exposed areas immediately after erecting hangers and supports. Use same materials as used for shop painting. Comply with SSPC-PA 1 requirements for touching up field-painted surfaces.
 - 1. Apply paint by brush or spray to provide a minimum dry film thickness of 2.0 mils.
- B. Touchup: Cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal are specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting"

C. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

3.6 HANGER AND SUPPORT SCHEDULE

- A. Specific hanger and support requirements are in Sections specifying piping systems and equipment.
- B. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified in piping system Sections.
- C. Use hangers and supports with galvanized metallic coatings for piping and equipment that will not have field-applied finish.
- D. Use nonmetallic coatings on attachments for electrolytic protection where attachments are in direct contact with copper tubing.
- E. Use carbon-steel pipe hangers, supports metal trapeze pipe hangers and metal framing systems and attachments for general service applications.
- F. Use copper-plated pipe hangers and copper or stainless-steel attachments for copper piping and tubing.
- G. Use padded hangers for piping that is subject to scratching.
- H. Horizontal-Piping Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Yoke-Type Pipe Clamps (MSS Type 2): For suspension of up to 1050 deg F, pipes NPS 4 to NPS 24, requiring up to 4 inches of insulation.
 - 3. Carbon- or Alloy-Steel, Double-Bolt Pipe Clamps (MSS Type 3): For suspension of pipes NPS 3/4 to NPS 36, requiring clamp flexibility and up to 4 inches of insulation.
 - 4. Steel Pipe Clamps (MSS Type 4): For suspension of cold and hot pipes NPS 1/2 to NPS 24 if little or no insulation is required.
 - 5. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 6. Adjustable, Swivel Split- or Solid-Ring Hangers (MSS Type 6): For suspension of noninsulated, stationary pipes NPS 3/4 to NPS 8.
 - 7. Adjustable, Steel Band Hangers (MSS Type 7): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 8. Adjustable Band Hangers (MSS Type 9): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 9. Adjustable, Swivel-Ring Band Hangers (MSS Type 10): For suspension of noninsulated, stationary pipes NPS 1/2 to NPS 8.
 - 10. Split Pipe Ring with or without Turnbuckle Hangers (MSS Type 11): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 8.

- 11. Extension Hinged or Two-Bolt Split Pipe Clamps (MSS Type 12): For suspension of noninsulated, stationary pipes NPS 3/8 to NPS 3.
- 12. U-Bolts (MSS Type 24): For support of heavy pipes NPS 1/2 to NPS 30.
- 13. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
- 14. Pipe Saddle Supports (MSS Type 36): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate.
- 15. Pipe Stanchion Saddles (MSS Type 37): For support of pipes NPS 4 to NPS 36, with steel-pipe base stanchion support and cast-iron floor flange or carbon-steel plate, and with U-bolt to retain pipe.
- 16. Adjustable Pipe Saddle Supports (MSS Type 38): For stanchion-type support for pipes NPS 2-1/2 to NPS 36 if vertical adjustment is required, with steel-pipe base stanchion support and cast-iron floor flange.
- 17. Single-Pipe Rolls (MSS Type 41): For suspension of pipes NPS 1 to NPS 30, from two rods if longitudinal movement caused by expansion and contraction might occur.
- 18. Adjustable Roller Hangers (MSS Type 43): For suspension of pipes NPS 2-1/2 to NPS 24, from single rod if horizontal movement caused by expansion and contraction might occur.
- 19. Complete Pipe Rolls (MSS Type 44): For support of pipes NPS 2 to NPS 42 if longitudinal movement caused by expansion and contraction might occur but vertical adjustment is not necessary.
- 20. Pipe Roll and Plate Units (MSS Type 45): For support of pipes NPS 2 to NPS 24 if small horizontal movement caused by expansion and contraction might occur and vertical adjustment is not necessary.
- 21. Adjustable Pipe Roll and Base Units (MSS Type 46): For support of pipes NPS 2 to NPS 30 if vertical and lateral adjustment during installation might be required in addition to expansion and contraction.
- I. Vertical-Piping Clamps: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8): For support of pipe risers NPS 3/4 to NPS 24.
 - 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): For support of pipe risers NPS 3/4 to NPS 24 if longer ends are required for riser clamps.
- J. Hanger-Rod Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Swivel Turnbuckles (MSS Type 15): For use with MSS Type 11, split pipe rings.
 - 4. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 5. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.
- K. Building Attachments: Unless otherwise indicated and except as specified in piping system Sections, install the following types:

- 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
- 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.
 - c. Heavy (MSS Type 33): 3000 lb.
- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.
- L. Saddles and Shields: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Steel-Pipe-Covering Protection Saddles (MSS Type 39): To fill interior voids with insulation that matches adjoining insulation.
 - 2. Protection Shields (MSS Type 40): Of length recommended in writing by manufacturer to prevent crushing insulation.
 - 3. Thermal-Hanger Shield Inserts: For supporting insulated pipe.
- M. Spring Hangers and Supports: Unless otherwise indicated and except as specified in piping system Sections, install the following types:
 - 1. Restraint-Control Devices (MSS Type 47): Where indicated to control piping movement.
 - 2. Spring Cushions (MSS Type 48): For light loads if vertical movement does not exceed 1-1/4 inches.
 - 3. Spring-Cushion Roll Hangers (MSS Type 49): For equipping Type 41, roll hanger with springs.
 - 4. Spring Sway Braces (MSS Type 50): To retard sway, shock, vibration, or thermal expansion in piping systems.

- 5. Variable-Spring Hangers (MSS Type 51): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from hanger.
- 6. Variable-Spring Base Supports (MSS Type 52): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from base support.
- 7. Variable-Spring Trapeze Hangers (MSS Type 53): Preset to indicated load and limit variability factor to 25 percent to allow expansion and contraction of piping system from trapeze support.
- 8. Constant Supports: For critical piping stress and if necessary to avoid transfer of stress from one support to another support, critical terminal, or connected equipment. Include auxiliary stops for erection, hydrostatic test, and load-adjustment capability. These supports include the following types:
 - a. Horizontal (MSS Type 54): Mounted horizontally.
 - b. Vertical (MSS Type 55): Mounted vertically.
 - c. Trapeze (MSS Type 56): Two vertical-type supports and one trapeze member.
- N. Comply with MSS SP-69 for trapeze pipe-hanger selections and applications that are not specified in piping system Sections.
- O. Comply with MFMA-103 for metal framing system selections and applications that are not specified in piping system Sections.
- P. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

SECTION 230553 - IDENTIFICATION FOR HVAC PIPING AND EQUIPMENT

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Equipment labels.
- 2. Pipe labels.
- 3. Duct labels.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 EQUIPMENT LABELS

A. Plastic Labels for Equipment:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - Seton Identification Products.
- 2. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/8 inch thick, and having predrilled holes for attachment hardware.
- 3. Letter Color: White.
- 4. Background Color: Black.
- 5. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- 6. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- 7. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering

for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.

- 8. Fasteners: Stainless-steel rivets or self-tapping screws.
- 9. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- B. Label Content: Include equipment's Drawing designation or unique equipment number, Drawing numbers where equipment is indicated (plans, details, and schedules), and the Specification Section number and title where equipment is specified.
- C. Equipment Label Schedule: For each item of equipment to be labeled, on 8-1/2-by-11-inch bond paper. Tabulate equipment identification number, and identify Drawing numbers where equipment is indicated (plans, details, and schedules) and the Specification Section number and title where equipment is specified. Equipment schedule shall be included in operation and maintenance data.

2.2 PIPE LABELS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Brady Corporation.
 - 2. Marking Sevices Inc.
 - 3. Seton Identification Products.
- B. General Requirements for Manufactured Pipe Labels: Preprinted, color-coded, with lettering indicating service, and showing flow direction according to ASME A13.1.
- C. Pretensioned Pipe Labels: Precoiled, semirigid plastic formed to cover full circumference of pipe and to attach to pipe without fasteners or adhesive.
- D. Self-Adhesive Pipe Labels: Printed plastic with contact-type, permanent-adhesive backing.
- E. Pipe Label Contents: Include identification of piping service using same designations or abbreviations as used on Drawings; also include pipe size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with piping system service lettering to accommodate both directions or as separate unit on each pipe label to indicate flow direction.
 - 2. Lettering Size: Size letters according to ASME A13.1 for piping.

2.3 DUCT LABELS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Brady Corporation.
 - 2. Marking Sevices Inc.
 - 3. Seton Identification Products.

- B. Material and Thickness: Multilayer, multicolor, plastic labels for mechanical engraving, 1/16 inch thick, and having predrilled holes for attachment hardware.
- C. Letter Color: White.
- D. Background Color: Black.
- E. Maximum Temperature: Able to withstand temperatures up to 160 deg F.
- F. Minimum Label Size: Length and width vary for required label content, but not less than 2-1/2 by 3/4 inch.
- G. Minimum Letter Size: 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-quarters the size of principal lettering.
- H. Fasteners: Stainless-steel rivets or self-tapping screws.
- I. Adhesive: Contact-type permanent adhesive, compatible with label and with substrate.
- J. Duct Label Contents: Include identification of duct service using same designations or abbreviations as used on Drawings; also include duct size and an arrow indicating flow direction.
 - 1. Flow-Direction Arrows: Integral with duct system service lettering to accommodate both directions or as separate unit on each duct label to indicate flow direction.

PART 3 - EXECUTION

3.1 PREPARATION

A. Clean piping and equipment surfaces of substances that could impair bond of identification devices, including dirt, oil, grease, release agents, and incompatible primers, paints, and encapsulants.

3.2 GENERAL INSTALLATION REQUIREMENTS

- A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied.
- B. Coordinate installation of identifying devices with locations of access panels and doors.
- C. Install identifying devices before installing acoustical ceilings and similar concealment.

3.3 EQUIPMENT LABEL INSTALLATION

- A. Install or permanently fasten labels on each major item of mechanical equipment.
- B. Locate equipment labels where accessible and visible.

3.4 PIPE LABEL INSTALLATION

- A. Pipe Label Locations: Locate pipe labels where piping is exposed or above accessible ceilings in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior exposed locations as follows:
 - 1. Near each valve and control device.
 - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch.
 - 3. Near penetrations and on both sides of through walls, floors, ceilings, and inaccessible enclosures.
 - 4. At access doors, manholes, and similar access points that permit view of concealed piping.
 - 5. Near major equipment items and other points of origination and termination.
 - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment.
 - 7. On piping above removable acoustical ceilings. Omit intermediately spaced labels.
- B. Directional Flow Arrows: Arrows shall be used to indicate direction of flow in pipes, including pipes where flow is allowed in both directions.
- C. Pipe Label Color Schedule:
 - 1. Refrigerant Piping: White letters on a safety-purple background.
 - 2. Natural Gas Piping: Black letters on a safety-yellow background.

3.5 DUCT LABEL INSTALLATION

- A. Install plastic-laminated duct labels with permanent adhesive on air ducts in the following color codes:
 - 1. Blue: For cold-air supply ducts.
 - 2. Yellow: For hot-air supply ducts.
 - 3. Green: For exhaust-, outside-, relief-, return-, and mixed-air ducts.
- B. Locate labels near points where ducts enter into and exit from concealed spaces and at maximum intervals of 50 feet in each space where ducts are exposed or concealed by removable ceiling system.

SECTION 230593 - TESTING, ADJUSTING, AND BALANCING FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Balancing Air Systems:
 - a. Constant-volume air systems.
 - b. Variable-air-volume systems.
 - 2. Testing, Adjusting, and Balancing Equipment:
 - a. Motors.
 - b. Condensing units.
 - 3. Duct leakage tests.
 - 4. Control system verification.

1.3 DEFINITIONS

- A. AABC: Associated Air Balance Council.
- B. BAS: Building automation systems.
- C. NEBB: National Environmental Balancing Bureau.
- D. TAB: Testing, adjusting, and balancing.
- E. TABB: Testing, Adjusting, and Balancing Bureau.
- F. TAB Specialist: An independent entity meeting qualifications to perform TAB work.
- G. TDH: Total dynamic head.

1.4 PREINSTALLATION MEETINGS

- A. TAB Conference: If requested by the Owner, conduct a TAB conference at Project site after approval of the TAB strategies and procedures plan to develop a mutual understanding of the details. Provide a minimum of 14 days' advance notice of scheduled meeting time and location.
 - 1. Minimum Agenda Items:
 - a. The Contract Documents examination report.
 - b. The TAB plan.
 - c. Needs for coordination and cooperation of trades and subcontractors.
 - d. Proposed procedures for documentation and communication flow.

1.5 INFORMATIONAL SUBMITTALS

A. Certified TAB reports.

1.6 QUALITY ASSURANCE

- A. TAB Specialists Qualifications: Certified by NEBB.
 - 1. TAB Field Supervisor: Employee of the TAB specialist and certified by NEBB.
 - 2. TAB Technician: Employee of the TAB specialist and certified by NEBB as a TAB technician.
- B. Instrumentation Type, Quantity, Accuracy, and Calibration: Comply with requirements in ASHRAE 111, Section 4, "Instrumentation."
- C. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 7.2.2 "Air Balancing."
- D. ASHRAE/IESNA Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6.7.2.3 "System Balancing."

PART 2 - PRODUCTS (Not Applicable)

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems designs that may preclude proper TAB of systems and equipment.
- B. Examine installed systems for balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers. Verify that locations of these balancing devices are applicable for intended purpose and are accessible.

- C. Examine the approved submittals for HVAC systems and equipment.
- D. Examine design data including HVAC system descriptions, statements of design assumptions for environmental conditions and systems output, and statements of philosophies and assumptions about HVAC system and equipment controls.
- E. Examine ceiling plenums and underfloor air plenums used for supply, return, or relief air to verify that they are properly separated from adjacent areas. Verify that penetrations in plenum walls are sealed and fire-stopped if required.
- F. Examine equipment performance data including fan and pump curves.
 - 1. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system.
 - 2. Calculate system-effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from the conditions used to rate equipment performance. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," or in SMACNA's "HVAC Systems Duct Design." Compare results with the design data and installed conditions.
- G. Examine system and equipment installations and verify that field quality-control testing, cleaning, and adjusting specified in individual Sections have been performed.
- H. Examine test reports specified in individual system and equipment Sections.
- I. Examine HVAC equipment and verify that bearings are greased, belts are aligned and tight, filters are clean, and equipment with functioning controls is ready for operation.
- J. Examine terminal units, such as variable refrigerant flow boxes, and verify that they are accessible and their controls are connected and functioning.
- K. Examine heat-transfer coils for correct piping connections and for clean and straight fins.
- L. Examine operating safety interlocks and controls on HVAC equipment.
- M. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values.

3.2 PREPARATION

- A. Prepare a TAB plan that includes the following:
 - 1. Equipment and systems to be tested.
 - 2. Strategies and step-by-step procedures for balancing the systems.
 - 3. Instrumentation to be used.
 - 4. Sample forms with specific identification for all equipment.

B. Perform system-readiness checks of HVAC systems and equipment to verify system readiness for TAB work. Include, at a minimum, the following:

1. Airside:

- a. Verify that leakage and pressure tests on air distribution systems have been satisfactorily completed.
- b. Duct systems are complete with terminals installed.
- c. Volume, smoke, and fire dampers are open and functional.
- d. Clean filters are installed.
- e. Fans are operating, free of vibration, and rotating in correct direction.
- f. Variable-frequency controllers' startup is complete and safeties are verified.
- g. Automatic temperature-control systems are operational.
- h. Ceilings are installed.
- i. Windows and doors are installed.
- j. Suitable access to balancing devices and equipment is provided.

3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING

- A. Perform testing and balancing procedures on each system according to the procedures contained in NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and in this Section.
- B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary for TAB procedures.
 - 1. After testing and balancing, patch probe holes in ducts with same material and thickness as used to construct ducts.
 - 2. After testing and balancing, install test ports and duct access doors that comply with requirements in Section 233300 "Air Duct Accessories."
 - 3. Install and join new insulation that matches removed materials. Restore insulation, coverings, vapor barrier, and finish according to Section 230713 "Duct Insulation," and Section 230719 "HVAC Piping Insulation."
- C. Mark equipment and balancing devices, including damper-control positions, valve position indicators, fan-speed-control levers, and similar controls and devices, with paint or other suitable, permanent identification material to show final settings.
- D. Take and report testing and balancing measurements in inch-pound (IP) units.

3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS

- A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Cross-check the summation of required outlet volumes with required fan volumes.
- B. Prepare schematic diagrams of systems' "as-built" duct layouts.

- C. Determine the best locations in main and branch ducts for accurate duct-airflow measurements.
- D. Check airflow patterns from the outdoor-air louvers and dampers and the return- and exhaust-air dampers through the supply-fan discharge and mixing dampers.
- E. Locate start-stop and disconnect switches, electrical interlocks, and motor starters.
- F. Verify that motor starters are equipped with properly sized thermal protection.
- G. Check dampers for proper position to achieve desired airflow path.
- H. Check for airflow blockages.
- I. Check condensate drains for proper connections and functioning.
- J. Check for proper sealing of air-handling-unit components.
- K. Verify that air duct system is sealed as specified in Section 233113 "Metal Ducts."

3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS AND SINGLE ZONE VARIABLE-AIR-VOLUME SYSTEMS

- A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer.
 - 1. Measure total airflow.
 - a. Set outside-air, return-air, and relief-air dampers for proper position that simulates minimum outdoor-air conditions.
 - b. Where duct conditions allow, measure airflow by Pitot-tube traverse. If necessary, perform multiple Pitot-tube traverses to obtain total airflow.
 - c. Where duct conditions are not suitable for Pitot-tube traverse measurements, a coil traverse may be acceptable.
 - d. If a reliable Pitot-tube traverse or coil traverse is not possible, measure airflow at terminals and calculate the total airflow.
 - 2. Measure fan static pressures as follows:
 - a. Measure static pressure directly at the fan outlet or through the flexible connection.
 - b. Measure static pressure directly at the fan inlet or through the flexible connection.
 - c. Measure static pressure across each component that makes up the air-handling system.
 - d. Report artificial loading of filters at the time static pressures are measured.
 - 3. Review Record Documents to determine variations in design static pressures versus actual static pressures. Calculate actual system-effect factors. Recommend adjustments to accommodate actual conditions.
 - 4. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Comply with requirements in HVAC Sections for air-handling units for

- adjustment of fans, belts, and pulley sizes to achieve indicated air-handling-unit performance.
- 5. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload occurs. Measure amperage in full-cooling, full-heating, economizer, and any other operating mode to determine the maximum required brake horsepower.
- B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows.
 - 1. Measure airflow of submain and branch ducts.
 - 2. Adjust submain and branch duct volume dampers for specified airflow.
 - 3. Re-measure each submain and branch duct after all have been adjusted.
- C. Adjust air inlets and outlets for each space to indicated airflows.
 - 1. Set airflow patterns of adjustable outlets for proper distribution without drafts.
 - 2. Measure inlets and outlets airflow.
 - 3. Adjust each inlet and outlet for specified airflow.
 - 4. Re-measure each inlet and outlet after they have been adjusted.
- D. Verify final system conditions.
 - 1. Re-measure and confirm that minimum outdoor, return, and relief airflows are within design. Readjust to design if necessary.
 - 2. Re-measure and confirm that total airflow is within design.
 - 3. Re-measure all final fan operating data, rpms, volts, amps, and static profile.
 - 4. Mark all final settings.
 - 5. Test system in economizer mode. Verify proper operation and adjust if necessary.
 - 6. Measure and record all operating data.
 - 7. Record final fan-performance data.

3.6 PROCEDURES FOR MOTORS

- A. Motors 1/2 HP and Larger: Test at final balanced conditions and record the following data:
 - 1. Manufacturer's name, model number, and serial number.
 - 2. Motor horsepower rating.
 - 3. Motor rpm.
 - 4. Phase and hertz.
 - 5. Nameplate and measured voltage, each phase.
 - 6. Nameplate and measured amperage, each phase.
 - 7. Starter size and thermal-protection-element rating.
 - 8. Service factor and frame size.
- B. Motors Driven by Variable-Frequency Controllers: Test manual bypass of controller to prove proper operation.

3.7 PROCEDURES FOR CONDENSING UNITS

- A. Verify proper rotation of fans.
- B. Measure entering- and leaving-air temperatures.
- C. Record fan and motor operating data.

3.8 CONTROLS VERIFICATION

- A. In conjunction with system balancing, perform the following:
 - 1. Verify temperature control system is operating within the design limitations.
 - 2. Confirm that the sequences of operation are in compliance with Contract Documents.
 - 3. Verify that controllers are calibrated and function as intended.
 - 4. Verify that controller set points are as indicated.
 - 5. Verify the operation of lockout or interlock systems.
 - 6. Verify the operation of valve and damper actuators.
 - 7. Verify that controlled devices are properly installed and connected to correct controller.
 - 8. Verify that controlled devices travel freely and are in position indicated by controller: open, closed, or modulating.
 - 9. Verify location and installation of sensors to ensure that they sense only intended temperature, humidity, or pressure.
- B. Reporting: Include a summary of verifications performed, remaining deficiencies, and variations from indicated conditions.

3.9 TOLERANCES

- A. Set HVAC system's airflow rates and water flow rates within the following tolerances:
 - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus or minus 10 percent.
 - 2. Air Outlets and Inlets: Plus or minus 10 percent.
- B. Maintaining pressure relationships as designed shall have priority over the tolerances specified above.

3.10 PROGRESS REPORTING

A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems balancing devices. Recommend changes and additions to systems balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices.

3.11 FINAL REPORT

- A. General: Prepare a certified written report; tabulate and divide the report into separate sections for tested systems and balanced systems.
 - 1. Include a certification sheet at the front of the report's binder, signed and sealed by the certified testing and balancing engineer.
 - 2. Include a list of instruments used for procedures, along with proof of calibration.
 - 3. Certify validity and accuracy of field data.
- B. Final Report Contents: In addition to certified field-report data, include the following:
 - 1. Fan curves.
 - 2. Manufacturers' test data.
 - 3. Field test reports prepared by system and equipment installers.
 - 4. Other information relative to equipment performance; do not include Shop Drawings and Product Data.
- C. General Report Data: In addition to form titles and entries, include the following data:
 - 1. Title page.
 - 2. Name and address of the TAB specialist.
 - 3. Project name.
 - 4. Project location.
 - 5. Architect's name and address.
 - 6. Engineer's name and address.
 - 7. Contractor's name and address.
 - 8. Report date.
 - 9. Signature of TAB supervisor who certifies the report.
 - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report.
 - 11. Summary of contents including the following:
 - a. Indicated versus final performance.
 - b. Notable characteristics of systems.
 - c. Description of system operation sequence if it varies from the Contract Documents.
 - 12. Nomenclature sheets for each item of equipment.
 - 13. Data for terminal units, including manufacturer's name, type, size, and fittings.
 - 14. Notes to explain why certain final data in the body of reports vary from indicated values.
 - 15. Test conditions for fans and pump performance forms including the following:
 - a. Settings for outdoor-, return-, and exhaust-air dampers.
 - b. Conditions of filters.
 - c. Cooling coil, wet- and dry-bulb conditions.
 - d. Face and bypass damper settings at coils.
 - e. Fan drive settings including settings and percentage of maximum pitch diameter.
 - f. Inlet vane settings for variable-air-volume systems.
 - g. Settings for supply-air, static-pressure controller.
 - h. Other system operating conditions that affect performance.

- D. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following:
 - 1. Quantities of outdoor, supply, return, and exhaust airflows.
 - 2. Water and steam flow rates.
 - 3. Duct, outlet, and inlet sizes.
 - 4. Pipe and valve sizes and locations.
 - 5. Terminal units.
 - 6. Balancing stations.
 - 7. Position of balancing devices.
- E. Air-Handling-Unit Test Reports: For air-handling units with coils, include the following:
 - 1. Unit Data:
 - Unit identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Unit arrangement and class.
 - g. Discharge arrangement.
 - h. Sheave make, size in inches, and bore.
 - i. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - j. Number, make, and size of belts.
 - k. Number, type, and size of filters.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Filter static-pressure differential in inches wg.
 - f. Preheat-coil static-pressure differential in inches wg.
 - g. Cooling-coil static-pressure differential in inches wg.
 - h. Heating-coil static-pressure differential in inches wg.
 - i. Outdoor airflow in cfm.
 - j. Return airflow in cfm.
 - k. Outdoor-air damper position.
 - 1. Return-air damper position.
 - m. Vortex damper position.

- F. Gas- and Oil-Fired Heat Apparatus Test Reports: In addition to manufacturer's factory startup equipment reports, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and unit size.
 - e. Manufacturer's serial number.
 - f. Fuel type in input data.
 - g. Output capacity in Btu/h.
 - h. Ignition type.
 - i. Burner-control types.
 - j. Motor horsepower and rpm.
 - k. Motor volts, phase, and hertz.
 - 1. Motor full-load amperage and service factor.
 - m. Sheave make, size in inches, and bore.
 - n. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Entering-air temperature in deg F.
 - c. Leaving-air temperature in deg F.
 - d. Air temperature differential in deg F.
 - e. Entering-air static pressure in inches wg.
 - f. Leaving-air static pressure in inches wg.
 - g. Air static-pressure differential in inches wg.
 - h. Low-fire fuel input in Btu/h.
 - i. High-fire fuel input in Btu/h.
 - j. Manifold pressure in psig.
 - k. High-temperature-limit setting in deg F.
 - 1. Operating set point in Btu/h.
 - m. Motor voltage at each connection.
 - n. Motor amperage for each phase.
 - o. Heating value of fuel in Btu/h.
- G. Electric-Coil Test Reports: For electric furnaces, duct coils, and electric coils installed in central-station air-handling units, include the following:
 - 1. Unit Data:
 - a. System identification.
 - b. Location.
 - c. Coil identification.
 - d. Capacity in Btu/h.
 - e. Number of stages.
 - f. Connected volts, phase, and hertz.
 - g. Rated amperage.

- h. Airflow rate in cfm.
- i. Face area in sq. ft..
- j. Minimum face velocity in fpm.
- 2. Test Data (Indicated and Actual Values):
 - a. Heat output in Btu/h.
 - b. Airflow rate in cfm.
 - c. Air velocity in fpm.
 - d. Entering-air temperature in deg F.
 - e. Leaving-air temperature in deg F.
 - f. Voltage at each connection.
 - g. Amperage for each phase.
- H. Fan Test Reports: For supply, return, and exhaust fans, include the following:
 - 1. Fan Data:
 - a. System identification.
 - b. Location.
 - c. Make and type.
 - d. Model number and size.
 - e. Manufacturer's serial number.
 - f. Arrangement and class.
 - g. Sheave make, size in inches, and bore.
 - h. Center-to-center dimensions of sheave and amount of adjustments in inches.
 - 2. Motor Data:
 - a. Motor make, and frame type and size.
 - b. Horsepower and rpm.
 - c. Volts, phase, and hertz.
 - d. Full-load amperage and service factor.
 - e. Sheave make, size in inches, and bore.
 - f. Center-to-center dimensions of sheave, and amount of adjustments in inches.
 - g. Number, make, and size of belts.
 - 3. Test Data (Indicated and Actual Values):
 - a. Total airflow rate in cfm.
 - b. Total system static pressure in inches wg.
 - c. Fan rpm.
 - d. Discharge static pressure in inches wg.
 - e. Suction static pressure in inches wg.
- I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following:
 - 1. Report Data:

- a. System and air-handling-unit number.
- b. Location and zone.
- c. Traverse air temperature in deg F.
- d. Duct static pressure in inches wg.
- e. Duct size in inches.
- f. Duct area in sq. ft..
- g. Indicated airflow rate in cfm.
- h. Indicated velocity in fpm.
- i. Actual airflow rate in cfm.
- j. Actual average velocity in fpm.
- k. Barometric pressure in psig.

J. Air-Terminal-Device Reports:

1. Unit Data:

- a. System and air-handling unit identification.
- b. Location and zone.
- c. Apparatus used for test.
- d. Area served.
- e. Make.
- f. Number from system diagram.
- g. Type and model number.
- h. Size.
- i. Effective area in sq. ft..

2. Test Data (Indicated and Actual Values):

- a. Airflow rate in cfm.
- b. Air velocity in fpm.
- c. Preliminary airflow rate as needed in cfm.
- d. Preliminary velocity as needed in fpm.
- e. Final airflow rate in cfm.
- f. Final velocity in fpm.
- g. Space temperature in deg F.

K. Instrument Calibration Reports:

1. Report Data:

- a. Instrument type and make.
- b. Serial number.
- c. Application.
- d. Dates of use.
- e. Dates of calibration.

END OF SECTION 230593

SECTION 230713 - DUCT INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following duct services:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 7. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 8. Outdoor, exposed supply and return.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory- and field-applied if any).

1.4 QUALITY ASSURANCE

- A. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.
 - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.5 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.6 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with duct Installer for duct insulation application. Before preparing ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.
- C. Coordinate installation and testing of heat tracing.

1.7 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Duct Insulation Schedule, General," "Indoor Duct and Plenum Insulation Schedule," and "Aboveground, Outdoor Duct and Plenum Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.
- F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type III with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation.

- b. Johns Manville; a Berkshire Hathaway company.
- c. Knauf Insulation.
- d. Owens Corning.
- G. Mineral-Fiber Board Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 612, Type IA or Type IB. For duct and plenum applications, provide insulation with factory-applied FSK jacket. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article.
 - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. CertainTeed Corporation.
 - b. Johns Manville; a Berkshire Hathaway company.
 - c. Knauf Insulation.
 - d. Owens Corning.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Mon-Eco Industries, Inc.
- C. ASJ Adhesive, and FSK Jacket Adhesive: Comply with MIL-A-3316C, Class 2, Grade A for bonding insulation jacket lap seams and joints.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Mon-Eco Industries, Inc.

2.3 MASTICS

A. Materials shall be compatible with insulation materials, jackets, and substrates; comply with MIL-PRF-19565C, Type II.

- B. Vapor-Barrier Mastic: Water based; suitable for indoor use on below ambient services.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand: H. B. Fuller Construction Products.
 - b. Foster Brand; H. B. Fuller Construction Products.
 - c. Knauf Insulation.
 - 2. Water-Vapor Permeance: ASTM E 96/E 96M, Procedure B, 0.013 perm at 43-mil dry film thickness.
 - 3. Service Temperature Range: Minus 20 to plus 180 deg F.
 - 4. Solids Content: ASTM D 1644, 58 percent by volume and 70 percent by weight.
 - 5. Color: White.

2.4 SEALANTS

- A. FSK and Metal Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - b. Eagle Bridges Marathon Industries.
 - c. Mon-Eco Industries, Inc.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: Aluminum.
- B. ASJ Flashing Sealants, and Vinyl and PVC Jacket Flashing Sealants:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Childers Brand; H. B. Fuller Construction Products.
 - 2. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 3. Fire- and water-resistant, flexible, elastomeric sealant.
 - 4. Service Temperature Range: Minus 40 to plus 250 deg F.
 - 5. Color: White.

2.5 FACTORY-APPLIED JACKETS

- A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following:
 - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I.
 - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I.
 - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II.

2.6 FIELD-APPLIED JACKETS

- A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.
- B. Self-Adhesive Outdoor Jacket: 56-mil-thick, laminated vapor barrier and waterproofing membrane for installation over insulation located aboveground outdoors; consisting of a multiply embossed UV resistant aluminum foil/polymer laminate to which is applied a layer of rubberized asphalt.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Polyguard Products, Inc.

2.7 TAPES

- A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Ideal Tape Co., Inc., an American Biltrite Company.
 - c. Venture Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 11.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape.

- B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Ideal Tape Co., Inc., an American Biltrite Company.
 - c. Venture Tape.
 - 2. Width: 3 inches.
 - 3. Thickness: 6.5 mils.
 - 4. Adhesion: 90 ounces force/inch in width.
 - 5. Elongation: 2 percent.
 - 6. Tensile Strength: 40 lbf/inch in width.
 - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape.

2.8 SECUREMENTS

- A. Insulation Pins and Hangers:
 - 1. Metal, Adhesively Attached, Perforated-Base Insulation Hangers: Baseplate welded to projecting spindle that is capable of holding insulation, of thickness indicated, securely in position indicated when self-locking washer is in place. Comply with the following requirements:
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) AGM Industries, Inc.
 - 2) Gemco.
 - 3) Midwest Fasteners, Inc.
 - b. Baseplate: Perforated, galvanized carbon-steel sheet, 0.030 inch thick by 2 inches square.
 - c. Spindle: Aluminum, fully annealed, 0.106-inch-diameter shank, length to suit depth of insulation indicated.
 - d. Adhesive: Recommended by hanger manufacturer. Product with demonstrated capability to bond insulation hanger securely to substrates indicated without damaging insulation, hangers, and substrates.
 - 2. Insulation-Retaining Washers: Self-locking washers formed from 0.016-inch-thick, aluminum sheet, with beveled edge sized as required to hold insulation securely in place but not less than 1-1/2 inches in diameter.

- a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) AGM Industries, Inc.
 - 2) Hardcast, Inc.
 - 3) Nelson Stud Welding.
- b. Protect ends with capped self-locking washers incorporating a spring steel insert to ensure permanent retention of cap in exposed locations.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of ducts and fittings.
- B. Install insulation materials, vapor barriers or retarders, jackets, and thicknesses required for each item of duct system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Keep insulation materials dry during application and finishing.

- G. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- H. Install insulation with least number of joints practical.
- I. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
- J. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- K. Install insulation with factory-applied jackets as follows:
 - 1. Draw jacket tight and smooth.
 - 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
 - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below ambient services, apply vapor-barrier mastic over staples.
 - 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
 - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct flanges and fittings.
- L. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- M. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- N. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.

3.4 PENETRATIONS

A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.

- 1. Seal penetrations with flashing sealant.
- 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
- 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
- 4. Seal jacket to roof flashing with flashing sealant.
- B. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- C. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.

3.5 INSTALLATION OF MINERAL-FIBER INSULATION

- A. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Impale insulation over pins and attach speed washers.
 - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.

- 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.
 - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
 - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c.
- 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.
- B. Board Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins.
 - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces.
 - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions.
 - 3. Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows:
 - On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c.
 - b. On duct sides with dimensions larger than 18 inches, space pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing.
 - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums.
 - d. Do not overcompress insulation during installation.
 - e. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing.
 - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from one edge and one end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch

o.c. Install vapor barrier consisting of factory- or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions.

- a. Repair punctures, tears, and penetrations with tape or mastic to maintain vaporbarrier seal.
- b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to two times the insulation thickness, but not less than 3 inches.
- 5. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Groove and score insulation to fit as closely as possible to outside and inside radius of elbows. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow.
- 6. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch-wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c.

3.6 OUTDOOR, FIELD-APPLIED JACKET INSTALLATION

- A. Seal ducts in accordance with SMACNA HVAC Duct Construction Standards Metal and Flexible Second Edition (1995) Seal Class A (or latest version of SMACNA) prior to installation of insulation and the outdoor, field-applied jacket. Leaking ducts can cause the jacket to balloon since the jacket system will be air tight.
- B. Install outdoor, field-applied jacket on ductwork insulation pitched to shed water and prevent water ponding on top of the duct.
- C. Fiberglass, urethane, or phenolic foam insulations must have a factory applied FSK facing. Extruded or expanded polystyrene may be faced or unfaced. Contractor is responsible for testing adhesion to any substrate; there are products that have manufacturing release agents (Densglas gold) which will not allow adhesion.
- D. Substrate surfaces must be clean, dry, and free of oil films.
- E. Select outdoor, field-applied jacket materials in accordance with manufacturer's instructions for coverage on the underside of the ductwork, to avoid pins.
- F. Not all outdoor, field-applied jacket materials require pins. See manufacturer's instructions.
- G. Hot and cold air duct installation for proper maintenance of vapor barrier and physical integrity:
 - 1. Board insulation is mechanically installed on properly sealed duct according to the specifications using insulation fasteners (mini-cup weld pins or perf. based pins and washers).
 - 2. Washers are covered with a 4-inch square piece of smooth foil tape prior to jacketing the ductwork to prevent the puncture of the outer membrane by the fasteners.

- 3. Insulation on the top of the ductwork is installed to allow for the water to shed from the top of the duct and to prevent water from ponding on the top of the duct.
- H. Follow one of the options below for the installation of the outdoor, field-applied jacket depending on the jacket product and the duct sizes:
 - One Piece Installation.
 - b. Two Piece Installation.
 - c. Three Piece Installation.
 - d. Four Piece Installation.
- I. Select the correct outdoor, field-applied jacket when installing in temperatures below 50 deg F (10 deg C).
- J. Protect outdoor, field-applied jackets from damaging chemicals. Solvation will occur to the rubberized bitumen when exposed to petroleum or coal tar based compounds. Contact the manufacturer immediately for more information if there is doubt, before any chemical interaction.
- K. Allow each piece of the outdoor, field-applied jacket to stretch by using a 6-inch lap over the circumferential lap, and a 4-inch wide butt lap or overlap over the joint, and then roll with a roller. Position longitudinal laps at a water shed position.
- L. Do not pre-apply the outdoor, field-applied jacket to fabricated insulation unless metal banding is used. Outdoor, field-applied jackets are not mechanical fastening systems and will not hold the insulation on the duct.
- M. Lay out duct tees and branches using standard sheet metal two-piece methods, modified to allow for overlap seals. Add 1-1/2 inches to 2-inches to the throat of the bottom half of the fitting. Add 1-1/2 inches to the heel of the top half of the fitting. The bottom piece is installed first, and then the top piece lapped over the bottom piece to permit water shedding over the lap. Tees and fittings can be fabricated using standard layout procedures, adding 1-1/2 inches to 2-inches for the required laps. Fittings can also be gored. Oversize each gore piece to allow for a lap onto the preceding piece. The two-piece method makes a better looking fitting, however, as with metal work, larger fittings must be gored due to material constraints and ease of application. Standard metal fitting covers can also be used with the outdoor, field-applied jacket products. Insure that the fittings are vapor sealed.

3.7 FINISHES

- A. Insulation with ASJ, Glass-Cloth, or Other Paintable Jacket Material: Paint jacket with paint system identified below and as specified in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting."
 - 1. Flat Acrylic Finish: Two finish coats over a primer that is compatible with jacket material and finish coat paint. Add fungicidal agent to render fabric mildew proof.
 - a. Finish Coat Material: Interior, flat, latex-emulsion size.

- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.8 DUCT INSULATION SCHEDULE, GENERAL

- A. Plenums and Ducts Requiring Insulation:
 - 1. Indoor, concealed supply and outdoor air.
 - 2. Indoor, exposed supply and outdoor air.
 - 3. Indoor, concealed return located in unconditioned space.
 - 4. Indoor, exposed return located in unconditioned space.
 - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust.
 - 6. Indoor, concealed exhaust between isolation damper and penetration of building exterior.
 - 7. Indoor, exposed exhaust between isolation damper and penetration of building exterior.
 - 8. Outdoor, exposed supply and return.
- B. Items Not Insulated:
 - 1. Fibrous-glass ducts.
 - 2. Factory-insulated flexible ducts.
 - 3. Vibration-control devices.
 - 4. Factory-insulated access panels and doors.

3.9 INDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Concealed, round and flat-oval, supply-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- B. Concealed, round and flat-oval, outdoor-air duct insulation shall be following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- C. Concealed, rectangular, supply-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- D. Concealed, rectangular, outdoor-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- E. Concealed, rectangular, exhaust-air duct insulation between isolation damper and penetration of building exterior shall be the following unless otherwise noted:

- 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- F. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation:
 - 1. See Drawings
- G. Exposed, round and flat-oval, supply-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- H. Exposed, round and flat-oval, outdoor-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Blanket: 2 inches thick and 0.75-lb/cu. ft. nominal density.
- I. Exposed, rectangular, supply-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.
- J. Exposed, rectangular, outdoor-air duct insulation shall be the following unless otherwise noted:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density.

3.10 ABOVEGROUND, OUTDOOR DUCT AND PLENUM INSULATION SCHEDULE

- A. Insulation materials and thicknesses are identified below. If more than one material is listed for a duct system, selection from materials listed is Contractor's option.
- B. Exposed, rectangular, supply-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density. Provide outdoor, field-applied jacket.
- C. Exposed, rectangular, return-air duct insulation shall be the following:
 - 1. Mineral-Fiber Board: 2 inches thick and 3-lb/cu. ft. nominal density. Provide outdoor, field-applied jacket.

3.11 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.

END OF SECTION 230713

SECTION 230719 - HVAC PIPING INSULATION

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes insulating the following HVAC piping systems:
 - 1. Condensate drain piping, indoors.
 - 2. Refrigerant piping, indoors and outdoors.
- B. Related Sections:
 - 1. Section 230713 "Duct Insulation."

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated. Include thermal conductivity, water-vapor permeance thickness, and jackets (both factory and field applied if any).

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training.
- B. Surface-Burning Characteristics: For insulation and related materials, as determined by testing identical products according to ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing agency.
 - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less.

2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less.

1.6 DELIVERY, STORAGE, AND HANDLING

A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature.

1.7 COORDINATION

- A. Coordinate sizes and locations of supports, hangers, and insulation shields specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Coordinate clearance requirements with piping Installer for piping insulation application. Before preparing piping Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance.

1.8 SCHEDULING

- A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results.
- B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction.

PART 2 - PRODUCTS

2.1 INSULATION MATERIALS

- A. Comply with requirements in "Piping Insulation Schedule, General," "Indoor Piping Insulation Schedule," "Outdoor, Aboveground Piping Insulation Schedule," and "Outdoor, Underground Piping Insulation Schedule" articles for where insulating materials shall be applied.
- B. Products shall not contain asbestos, lead, mercury, or mercury compounds.
- C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871.
- D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795.
- E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process.

- F. Flexible Elastomeric Insulation: Closed-cell, sponge- or expanded-rubber materials. Comply with ASTM C 534, Type I for tubular materials.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Aeroflex USA, Inc.
 - b. Armacell LLC.
 - c. K-Flex USA.

2.2 ADHESIVES

- A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated unless otherwise indicated.
- B. Flexible Elastomeric and Polyolefin Adhesive: Comply with MIL-A-24179A, Type II, Class I.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Aeroflex USA, Inc.
 - b. Armacell LLC.
 - c. Foster Brand: H. B. Fuller Construction Products.
 - d. K-Flex USA.

2.3 SEALANTS

- A. Polystyrene Joint Sealants:
 - 1. Materials shall be compatible with insulation materials, jackets, and substrates.
 - 2. Permanently flexible, elastomeric sealant.
 - 3. Service Temperature Range: Minus 100 to plus 300 deg F.
 - 4. Color: White or gray.

2.4 FACTORY-APPLIED JACKETS

A. Insulation finish shall be the insulation manufacturer's recommended finish.

2.5 FIELD-APPLIED JACKETS

A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated.

B. Metal Jacket:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
 - b. RPR Products, Inc.
- 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105, or 5005, Temper H-14.
 - a. Sheet and roll stock ready for shop or field sizing or factory cut and rolled to size.
 - b. Finish and thickness are indicated in field-applied jacket schedules.
 - c. Moisture Barrier for Indoor Applications: 1-mil-thick, heat-bonded polyethylene and kraft paper.
 - d. Moisture Barrier for Outdoor Applications: 3-mil-thick, heat-bonded polyethylene and kraft paper.
 - e. Factory-Fabricated Fitting Covers:
 - 1) Same material, finish, and thickness as jacket.
 - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows.
 - 3) Tee covers.
 - 4) Flange and union covers.
 - 5) End caps.
 - 6) Beveled collars.
 - 7) Valve covers.
 - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available.

2.6 TAPES

- A. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Avery Dennison Corporation, Specialty Tapes Division.
 - b. Compac Corporation.
 - c. Ideal Tape Co., Inc., an American Biltrite Company.
 - 2. Width: 2 inches.
 - 3. Thickness: 3.7 mils.
 - 4. Adhesion: 100 ounces force/inch in width.
 - 5. Elongation: 5 percent.
 - 6. Tensile Strength: 34 lbf/inch in width.

2.7 SECUREMENTS

A. Bands:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. ITW Insulation Systems; Illinois Tool Works, Inc.
 - b. RPR Products. Inc.
- 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide with wing seal or closed seal.
- 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide with wing seal or closed seal.
- 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application.
- B. Staples: Outward-clinching insulation staples, nominal 3/4-inch-wide, stainless steel or Monel.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of insulation application.
 - 1. Verify that systems to be insulated have been tested and are free of defects.
 - 2. Verify that surfaces to be insulated are clean and dry.
 - 3. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application.
- B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows:
 - 1. Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.
 - 2. Carbon Steel: Coat carbon steel operating at a service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range.

- C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation.
- D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water.

3.3 GENERAL INSTALLATION REQUIREMENTS

- A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of piping including fittings, valves, and specialties.
- B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of pipe system as specified in insulation system schedules.
- C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state.
- D. Install insulation with longitudinal seams at top and bottom of horizontal runs.
- E. Install multiple layers of insulation with longitudinal and end seams staggered.
- F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties.
- G. Keep insulation materials dry during application and finishing.
- H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer.
- I. Install insulation with least number of joints practical.
- J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic.
 - 1. Install insulation continuously through hangers and around anchor attachments.
 - 2. For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic.
 - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer.
 - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield.
- K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses.
- L. Install insulation with factory-applied jackets as follows:

- 1. Draw jacket tight and smooth.
- 2. Cover circumferential joints with 3-inch-wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c.
- 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c.
 - a. For below-ambient services, apply vapor-barrier mastic over staples.
- 4. Cover joints and seams with tape, according to insulation material manufacturer's written instructions, to maintain vapor seal.
- 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to pipe flanges and fittings.
- M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness.
- N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement.
- O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints.
- P. For above-ambient services, do not install insulation to the following:
 - 1. Vibration-control devices.
 - 2. Testing agency labels and stamps.
 - 3. Nameplates and data plates.
 - 4. Manholes.
 - 5. Handholes.
 - 6. Cleanouts.

3.4 PENETRATIONS

- A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing.
 - 4. Seal jacket to roof flashing with flashing sealant.

- B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant.
- C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations.
 - 1. Seal penetrations with flashing sealant.
 - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant.
 - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches.
 - 4. Seal jacket to wall flashing with flashing sealant.
- D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions.
- E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions.
 - 1. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping and fire-resistive joint sealers.
- F. Insulation Installation at Floor Penetrations:
 - 1. Pipe: Install insulation continuously through floor penetrations.
 - 2. Seal penetrations through fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 GENERAL PIPE INSULATION INSTALLATION

- A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles.
- B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions:
 - 1. Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity unless otherwise indicated.
 - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation.
 - 3. Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive.

- 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement.
- 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below-ambient services, provide a design that maintains vapor barrier.
- 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker.
- 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below-ambient services and a breather mastic for above-ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour.
- 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions. Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape.
- 9. Stencil or label the outside insulation jacket of each union with the word "union." Match size and color of pipe labels.
- C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant.
- D. Install removable insulation covers at locations indicated. Installation shall conform to the following:
 - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation.
 - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket.
 - 3. Construct removable valve insulation covers in same manner as for flanges, except divide the two-part section on the vertical center line of valve body.
 - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe

- insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish.
- 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket.

3.6 INSTALLATION OF FLEXIBLE ELASTOMERIC INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- B. Insulation Installation on Pipe Flanges:
 - 1. Install pipe insulation to outer diameter of pipe flange.
 - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation.
 - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with cut sections of sheet insulation of same thickness as pipe insulation.
 - 4. Secure insulation to flanges and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are not available, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Install insulation to flanges as specified for flange insulation application.
 - 4. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.

3.7 FIELD-APPLIED JACKET INSTALLATION

A. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.8 FINISHES

- A. Flexible Elastomeric Thermal Insulation: After adhesive has fully cured, apply two coats of insulation manufacturer's recommended protective coating.
- B. Color: Final color as selected by Architect. Vary first and second coats to allow visual inspection of the completed Work.
- C. Do not field paint aluminum or stainless-steel jackets.

3.9 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Perform tests and inspections.
- C. Tests and Inspections:
 - Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing
 field-applied jacket and insulation in layers in reverse order of their installation. Extent of
 inspection shall be limited to three locations of straight pipe, three locations of threaded
 fittings, three locations of welded fittings, two locations of threaded strainers, two
 locations of welded strainers, three locations of threaded valves, and three locations of
 flanged valves for each pipe service defined in the "Piping Insulation Schedule, General"
 Article.
- D. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements.

3.10 PIPING INSULATION SCHEDULE, GENERAL

- A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option.
- B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following:
 - 1. Drainage piping located in crawl spaces.
 - 2. Underground piping.
 - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury.

3.11 INDOOR PIPING INSULATION SCHEDULE

- A. Condensate and Equipment Drain Water below 60 Deg F:
 - 1. All Pipe Sizes: Insulation shall be the following:
 - a. Flexible Elastomeric: 3/4 inch thick.

B. Refrigerant Piping:

- 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: Thickness shall be per manufacturer's recommendations.

3.12 OUTDOOR, ABOVEGROUND PIPING INSULATION SCHEDULE

- A. Refrigerant Piping:
 - 1. All Pipe Sizes: Insulation shall be one of the following:
 - a. Flexible Elastomeric: Thickness shall be per manufacturer's recommendations. Provide aluminum jacket.

3.13 OUTDOOR, FIELD-APPLIED JACKET SCHEDULE

- A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket.
- B. If more than one material is listed, selection from materials listed is Contractor's option.
- C. Piping, Exposed:
 - 1. Aluminum, Smooth: 0.020 inch thick.

END OF SECTION 230719

SECTION 230800 - COMMISSIONING OF HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes commissioning process requirements for HVAC&R systems, assemblies, and equipment.

B. Related Sections:

1. Section 019113 "General Commissioning Requirements" for general commissioning process requirements.

1.3 DEFINITIONS

- A. Commissioning Plan: A document that outlines the organization, schedule, allocation of resources, and documentation requirements of the commissioning process.
- B. CxA: Commissioning Authority.
- C. HVAC&R: Heating, Ventilating, Air Conditioning, and Refrigeration.
- D. Systems, Subsystems, Equipment, and Components: Where these terms are used together or separately, they shall mean "as-built" systems, subsystems, equipment, and components.

1.4 INFORMATIONAL SUBMITTALS

- A. Certificates of readiness.
- B. Certificates of completion of installation, prestart, and startup activities.

1.5 CONTRACTOR'S RESPONSIBILITIES

- A. Assist with commissioning tests at the direction of the CxA.
- B. Attend construction phase controls coordination meeting.
- C. Attend testing, adjusting, and balancing review and coordination meeting.

- D. Participate in HVAC&R systems, assemblies, equipment, and component maintenance orientation and inspection as directed by the CxA.
- E. Provide information requested by the CxA for final commissioning documentation.

1.6 CxA'S RESPONSIBILITIES

- A. Provide Project-specific construction checklists and commissioning process test procedures for actual HVAC&R systems, assemblies, equipment, and components to be furnished and installed as part of the construction contract.
- B. Direct commissioning testing.
- C. Verify testing, adjusting, and balancing of Work are complete.
- D. Provide test data, inspection reports, and certificates in Systems Manual.
- E. Provide measuring instruments and logging devices to record test data, and provide data acquisition equipment to record data for the complete range of testing for the required test period.

1.7 COMMISSIONING DOCUMENTATION

- A. Provide the following information to the CxA for inclusion in the commissioning plan:
 - 1. Plan for delivery and review of submittals, systems manuals, and other documents and reports.
 - 2. Identification of installed systems, assemblies, equipment, and components including design changes that occurred during the construction phase.
 - 3. Process and schedule for completing construction checklists and manufacturer's prestart and startup checklists for HVAC&R systems, assemblies, equipment, and components to be verified and tested.
 - 4. Certificate of completion certifying that installation, prestart checks, and startup procedures have been completed.
 - 5. Certificate of readiness certifying that HVAC&R systems, subsystems, equipment, and associated controls are ready for testing.
 - 6. Test and inspection reports and certificates.
 - 7. Corrective action documents.
 - 8. Verification of testing, adjusting, and balancing reports.

PART 2 - PRODUCTS (Not Used)

PART 3 - EXECUTION

3.1 TESTING PREPARATION

- A. Certify that HVAC&R systems, subsystems, and equipment have been installed, calibrated, and started and are operating according to the Contract Documents.
- B. Certify that HVAC&R instrumentation and control systems have been completed and calibrated, that they are operating according to the Contract Documents, and that pretest set points have been recorded.
- C. Certify that testing, adjusting, and balancing procedures have been completed and that testing, adjusting, and balancing reports have been submitted, discrepancies corrected, and corrective work approved.
- D. Set systems, subsystems, and equipment into operating mode to be tested (e.g., normal shutdown, normal auto position, normal manual position, unoccupied cycle, emergency power, and alarm conditions).
- E. Inspect and verify the position of each device and interlock identified on checklists.
- F. Check safety cutouts, alarms, and interlocks with life-safety systems during each mode of operation.
- G. Testing Instrumentation: Install measuring instruments and logging devices to record test data as directed by the CxA.

3.2 Testing AND BALANCING VERIFICATION

- A. Prior to performance of testing and balancing Work, provide copies of reports, sample forms, checklists, and certificates to the CxA.
- B. Notify the CxA at least 10 days in advance of testing and balancing Work, and provide access for the CxA to witness testing and balancing Work.
- C. Provide technicians, instrumentation, and tools to verify testing and balancing of HVAC&R systems at the direction of the CxA.
 - 1. The CxA will notify testing and balancing Subcontractor 10 days in advance of the date of field verification. Notice will not include data points to be verified.
 - 2. The testing and balancing Subcontractor shall use the same instruments (by model and serial number) that were used when original data were collected.
 - 3. Failure of an item includes, other than sound, a deviation of more than 10 percent. Failure of more than 10 percent of selected items shall result in rejection of final testing, adjusting, and balancing report. For sound pressure readings, a deviation of 3 dB shall result in rejection of final testing. Variations in background noise must be considered.

4. Remedy the deficiency and notify the CxA so verification of failed portions can be performed.

3.3 GENERAL TESTING REQUIREMENTS

- A. Provide technicians, instrumentation, and tools to perform commissioning test at the direction of the CxA.
- B. Scope of HVAC&R testing shall include entire HVAC&R installation, from central equipment for heat generation and refrigeration through distribution systems to each conditioned space. Testing shall include measuring capacities and effectiveness of operational and control functions.
- C. Test all operating modes, interlocks, control responses, and responses to abnormal or emergency conditions, and verify proper response of building automation system controllers and sensors.
- D. The CxA along with the HVAC&R Contractor, testing and balancing Subcontractor, and HVAC&R Instrumentation and Control Subcontractor shall prepare detailed testing plans, procedures, and checklists for HVAC&R systems, subsystems, and equipment.
- E. Tests will be performed using design conditions whenever possible during seasonal conditions.
- F. The CxA may direct that set points be altered when simulating conditions is not practical.
- G. The CxA may direct that sensor values be altered with a signal generator when design or simulating conditions and altering set points are not practical.
- H. If tests cannot be completed because of a deficiency outside the scope of the HVAC&R system, document the deficiency and report it to the Owner. After deficiencies are resolved, reschedule tests.
- I. If the testing plan indicates specific seasonal testing, complete appropriate initial performance tests and documentation and schedule seasonal tests.

3.4 HVAC&R systems, subsystems, and equipment Testing Procedures

- A. Pipe system cleaning, flushing, hydrostatic tests, and chemical treatment requirements are specified in HVAC piping Sections. HVAC&R Contractor shall prepare a pipe system cleaning, flushing, and hydrostatic testing plan. Provide cleaning, flushing, testing, and treating plan and final reports to the CxA. Plan shall include the following:
 - 1. Sequence of testing and testing procedures for each section of pipe to be tested, identified by pipe zone or sector identification marker. Markers shall be keyed to Drawings for each pipe sector, showing the physical location of each designated pipe test section. Drawings keyed to pipe zones or sectors shall be formatted to allow each section of piping to be physically located and identified when referred to in pipe system cleaning, flushing, hydrostatic testing, and chemical treatment plan.

- 2. Description of equipment for flushing operations.
- 3. Minimum flushing water velocity.
- 4. Tracking checklist for managing and ensuring that all pipe sections have been cleaned, flushed, hydrostatically tested, and chemically treated.
- B. Energy Supply System Testing: CxA to provide technicians, instrumentation, tools, and equipment to test performance of gas systems. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- C. Refrigeration System Testing: CxA to provide technicians, instrumentation, tools, and equipment to test performance of chillers, cooling towers, refrigerant compressors and condensers, heat pumps, and other refrigeration systems. The CxA shall determine the sequence of testing and testing procedures for each equipment item and pipe section to be tested.
- D. HVAC&R Distribution System Testing: CxA to provide technicians, instrumentation, tools, and equipment to test performance of air, steam, and hydronic distribution systems; special exhaust; and other distribution systems, including HVAC&R terminal equipment and unitary equipment.

END OF SECTION 230800

SECTION 230923 - DIRECT DIGITAL CONTROL (DDC) SYSTEM FOR HVAC

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. DDC system for monitoring and controlling of HVAC systems.
- 2. Delivery of selected control devices to equipment and systems manufacturers for factory installation and to HVAC systems installers for field installation.

1.3 DEFINITIONS

- A. Algorithm: A logical procedure for solving a recurrent mathematical problem. A prescribed set of well-defined rules or processes for solving a problem in a finite number of steps.
- B. Analog: A continuously varying signal value, such as current, flow, pressure, or temperature.

C. BACnet Specific Definitions:

- 1. BACnet: Building Automation Control Network Protocol, ASHRAE 135. A communications protocol allowing devices to communicate data over and services over a network.
- 2. BACnet Interoperability Building Blocks (BIBBs): BIBB defines a small portion of BACnet functionality that is needed to perform a particular task. BIBBs are combined to build the BACnet functional requirements for a device.
- 3. BACnet/IP: Defines and allows using a reserved UDP socket to transmit BACnet messages over IP networks. A BACnet/IP network is a collection of one or more IP subnetworks that share the same BACnet network number.
- 4. BACnet Testing Laboratories (BTL): Organization responsible for testing products for compliance with ASHRAE 135, operated under direction of BACnet International.
- 5. PICS (Protocol Implementation Conformance Statement): Written document that identifies the particular options specified by BACnet that are implemented in a device.
- D. Binary: Two-state signal where a high signal level represents ON" or "OPEN" condition and a low signal level represents "OFF" or "CLOSED" condition. "Digital" is sometimes used interchangeably with "Binary" to indicate a two-state signal.

- E. Controller: Generic term for any standalone, microprocessor-based, digital controller residing on a network, used for local or global control. Three types of controllers are indicated: Network Controller, Programmable Application Controller, and Application-Specific Controller.
- F. Control System Integrator: An entity that assists in expansion of existing enterprise system and support of additional operator interfaces to I/O being added to existing enterprise system.
- G. COV: Changes of value.
- H. DDC System Provider: Authorized representative of, and trained by, DDC system manufacturer and responsible for execution of DDC system Work indicated.
- I. Distributed Control: Processing of system data is decentralized and control decisions are made at subsystem level. System operational programs and information are provided to remote subsystems and status is reported back. On loss of communication, subsystems shall be capable of operating in a standalone mode using the last best available data.
- J. DOCSIS: Data-Over Cable Service Interface Specifications.
- K. Gateway: Bidirectional protocol translator that connects control systems that use different communication protocols.
- L. HLC: Heavy load conditions.
- M. I/O: System through which information is received and transmitted. I/O refers to analog input (AI), binary input (BI), analog output (AO) and binary output (BO). Analog signals are continuous and represent control influences such as flow, level, moisture, pressure, and temperature. Binary signals convert electronic signals to digital pulses (values) and generally represent two-position operating and alarm status. "Digital," (DI and (DO), is sometimes used interchangeably with "Binary," (BI) and (BO), respectively.
- N. LAN: Local area network.
- O. LNS: LonWorks Network Services.
- P. LON Specific Definitions:
 - 1. FTT-10: Echelon Transmitter-Free Topology Transceiver.
 - 2. LonMark: Association comprising suppliers and installers of LonTalk products. Association provides guidelines for implementing LonTalk protocol to ensure interoperability through a standard or consistent implementation.
 - 3. LonTalk: An open standard protocol developed by the Echelon Corporation that uses a "Neuron Chip" for communication. LonTalk is a register trademark of Echelon.
 - 4. LonWorks: Network technology developed by Echelon.
 - 5. Node: Device that communicates using CEA-709.1-C protocol and that is connected to a CEA-709.1-C network.
 - 6. Node Address: The logical address of a node on the network, consisting of a Domain number, Subnet number, and Node number. "Node number" portion of an address is a number assigned to device during installation, is unique within a subnet, and is not a factory-set unique Node ID.

- 7. Node ID: A unique 48-bit identifier assigned at factory to each CEA-709.1-C device. Sometimes called a "Neuron ID."
- 8. Program ID: An identifier (number) stored in a device (usually EEPROM) that identifies node manufacturer, functionality of device (application and sequence), transceiver used, and intended device usage.
- 9. Standard Configuration Property Type (SCPT): Pronounced "skip-it." A standard format type maintained by LonMark International for configuration properties.
- 10. Standard Network Variable Type (SNVT): Pronounced "snivet." A standard format type maintained by LonMark used to define data information transmitted and received by individual nodes. "SNVT" is used in two ways. It is an acronym for "Standard Network Variable Type" and is often used to indicate a network variable itself (i.e., it can mean "a network variable of a standard network variable type").
- 11. Subnet: Consists of a logical grouping of up to 127 nodes, where logical grouping is defined by node addressing. Each subnet is assigned a number, which is unique within a Domain. See "Node Address."
- 12. TP/FT-10: Free Topology Twisted Pair network defined by CEA-709.3 and is most common media type for a CEA-709.1-C control network.
- 13. TP/XF-1250: High-speed, 1.25-Mbps, twisted-pair, doubly terminated bus network defined by "LonMark Interoperability Guidelines" typically used only to connect multiple TP/FT-10 networks.
- 14. User-Defined Configuration Property Type (UCPT): Pronounced "U-Keep-It." A Configuration Property format type that is defined by device manufacturer.
- 15. User-Defined Network Variable Type (UNVT): Network variable format defined by device manufacturer. UNVTs create non-standard communications that other vendors' devices may not correctly interpret and may negatively impact system operation. UNVTs are not allowed.
- Q. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- R. Modbus TCP/IP: An open protocol for exchange of process data.
- S. MS/TP: Master-slave/token-passing, IEE 8802-3. Datalink protocol LAN option that uses twisted-pair wire for low-speed communication.
- T. MTBF: Mean time between failures.
- U. Network Controller: Digital controller, which supports a family of programmable application controllers and application-specific controllers, that communicates on peer-to-peer network for transmission of global data.
- V. Network Repeater: Device that receives data packet from one network and rebroadcasts it to another network. No routing information is added to protocol.
- W. PDA: Personal digital assistant.
- X. Peer to Peer: Networking architecture that treats all network stations as equal partners.
- Y. POT: Portable operator's terminal.

- Z. PUE: Performance usage effectiveness.
- AA. RAM: Random access memory.
- BB. RF: Radio frequency.
- CC. Router: Device connecting two or more networks at network layer.
- DD. Server: Computer used to maintain system configuration, historical and programming database.
- EE. TCP/IP: Transport control protocol/Internet protocol incorporated into Microsoft Windows.
- FF. UPS: Uninterruptible power supply.
- GG. USB: Universal Serial Bus.
- HH. User Datagram Protocol (UDP): This protocol assumes that the IP is used as the underlying protocol.
- II. VAV: Variable air volume.
- JJ. WLED: White light emitting diode.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conduct conference at Project site.

1.5 ACTION SUBMITTALS

A. Multiple Submissions:

- 1. If multiple submissions are required to execute work within schedule, first submit a coordinated schedule clearly defining intent of multiple submissions. Include a proposed date of each submission with a detailed description of submittal content to be included in each submission.
- 2. Clearly identify each submittal requirement indicated and in which submission the information will be provided.
- 3. Include an updated schedule in each subsequent submission with changes highlighted to easily track the changes made to previous submitted schedule.
- B. Product Data: For each type of product include the following:
 - 1. Construction details, material descriptions, dimensions of individual components and profiles, and finishes.
 - 2. Operating characteristics, electrical characteristics, and furnished accessories indicating process operating range, accuracy over range, control signal over range, default control signal with loss of power, calibration data specific to each unique application, electrical power requirements, and limitations of ambient operating environment, including temperature and humidity.

- 3. Product description with complete technical data, performance curves, and product specification sheets.
- 4. Installation, operation and maintenance instructions including factors effecting performance.
- 5. Bill of materials of indicating quantity, manufacturer, and extended model number for each unique product.
 - a. Operator workstations.
 - b. Servers.
 - c. Printers.
 - d. Gateways.
 - e. Routers.
 - f. Protocol analyzers.
 - g. DDC controllers.
 - h. Enclosures.
 - i. Electrical power devices.
 - i. UPS units.
 - k. Accessories.
 - 1. Instruments.
 - m. Control dampers and actuators.
 - n. Control valves and actuators.
- 6. When manufacturer's product datasheets apply to a product series rather than a specific product model, clearly indicate and highlight only applicable information.
- 7. Each submitted piece of product literature shall clearly cross reference specification and drawings that submittal is to cover.

C. Software Submittal:

- 1. Cross-referenced listing of software to be loaded on each operator workstation, server, gateway, and DDC controller.
- 2. Description and technical data of all software provided, and cross-referenced to products in which software will be installed.
- 3. Operating system software, operator interface and programming software, color graphic software, DDC controller software, maintenance management software, and third-party software.
- 4. Include a flow diagram and an outline of each subroutine that indicates each program variable name and units of measure.
- 5. Listing and description of each engineering equation used with reference source.
- 6. Listing and description of each constant used in engineering equations and a reference source to prove origin of each constant.
- 7. Description of operator interface to alphanumeric and graphic programming.
- 8. Description of each network communication protocol.
- 9. Description of system database, including all data included in database, database capacity and limitations to expand database.
- 10. Description of each application program and device drivers to be generated, including specific information on data acquisition and control strategies showing their relationship to system timing, speed, processing burden and system throughout.

11. Controlled Systems: Instrumentation list with element name, type of device, manufacturer, model number, and product data. Include written description of sequence of operation including schematic diagram.

D. Shop Drawings:

1. General Requirements:

- a. Include cover drawing with Project name, location, Owner, Architect, Contractor and issue date with each Shop Drawings submission.
- b. Include a drawing index sheet listing each drawing number and title that matches information in each title block.
- c. Prepare Drawings using CAD.
- d. Drawings Size: 11x17.
- 2. Include plans, elevations, sections, and mounting details where applicable.
- 3. Include details of product assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 4. Detail means of vibration isolation and show attachments to rotating equipment.
- 5. Plan Drawings indicating the following:
 - a. Screened backgrounds of walls, structural grid lines, HVAC equipment, ductwork and piping.
 - b. Room names and numbers with coordinated placement to avoid interference with control products indicated.
 - c. Each desktop operator workstation, server, gateway, router, DDC controller, control panel instrument connecting to DDC controller, and damper and valve connecting to DDC controller, if included in Project.
 - d. Exact placement of products in rooms, ducts, and piping to reflect proposed installed condition.
 - e. Network communication cable and raceway routing.
 - f. Information, drawn to scale, of ¼" per foot.
 - g. Proposed routing of wiring, cabling, conduit, and tubing, coordinated with building services for review before installation.
- 6. Schematic drawings for each controlled HVAC system indicating the following:
 - a. I/O points labeled with point names shown. Indicate instrument range, normal operating set points, and alarm set points. Indicate fail position of each damper and valve, if included in Project.
 - b. I/O listed in table format showing point name, type of device, manufacturer, model number, and cross-reference to product data sheet number.
 - c. A graphic showing location of control I/O in proper relationship to HVAC system.
 - d. Wiring diagram with each I/O point having a unique identification and indicating labels for all wiring terminals.
 - e. Unique identification of each I/O that shall be consistently used between different drawings showing same point.
 - f. Elementary wiring diagrams of controls for HVAC equipment motor circuits including interlocks, switches, relays and interface to DDC controllers.

- g. Narrative sequence of operation.
- h. Graphic sequence of operation, showing all inputs and output logical blocks.

7. Control panel drawings indicating the following:

- a. Panel dimensions, materials, size, and location of field cable, raceways, and tubing connections.
- b. Interior subpanel layout, drawn to scale and showing all internal components, cabling and wiring raceways, nameplates and allocated spare space.
- c. Front, rear, and side elevations and nameplate legend.
- d. Unique drawing for each panel.

8. DDC system network riser diagram indicating the following:

- a. Each device connected to network with unique identification for each.
- b. Interconnection of each different network in DDC system.
- c. For each network, indicate communication protocol, speed and physical means of interconnecting network devices, such as copper cable type, or fiber-optic cable type. Indicate raceway type and size for each.
- d. Each network port for connection of an operator workstation or other type of operator interface with unique identification for each.

9. DDC system electrical power riser diagram indicating the following:

- a. Each point of connection to field power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
- b. Each control power supply including, as applicable, transformers, power-line conditioners, transient voltage suppression and high filter noise units, DC power supplies, and UPS units with unique identification for each.
- c. Each product requiring power with requirements (volts/phase//hertz/amperes/connection type) listed for each.
- d. Power wiring type and size, race type, and size for each.

10. Monitoring and control signal diagrams indicating the following:

- a. Control signal cable and wiring between controllers and I/O.
- b. Point-to-point schematic wiring diagrams for each product.

11. Color graphics indicating the following:

- a. Itemized list of color graphic displays to be provided.
- b. For each display screen to be provided, a true color copy showing layout of pictures, graphics and data displayed.
- c. Intended operator access between related hierarchical display screens.

E. System Description:

1. Full description of DDC system architecture, network configuration, operator interfaces and peripherals, servers, controller types and applications, gateways, routers and other network devices, and power supplies.

- 2. Complete listing and description of each report, log and trend for format and timing and events which initiate generation.
- 3. System and product operation under each potential failure condition including, but not limited to, the following:
 - a. Loss of power.
 - b. Loss of network communication signal.
 - c. Loss of controller signals to inputs and outpoints.
 - d. Operator workstation failure.
 - e. Server failure.
 - f. Gateway failure.
 - g. Network failure
 - h. Controller failure.
 - i. Instrument failure.
 - j. Control damper and valve actuator failure.
- 4. Complete bibliography of documentation and media to be delivered to Owner.
- 5. Description of testing plans and procedures.
- 6. Description of Owner training.
- F. Delegated-Design Submittal: For DDC system products and installation indicated as being delegated.
 - 1. Supporting documentation showing DDC system design complies with performance requirements indicated, including calculations and other documentation necessary to prove compliance.
 - 2. Schedule and design calculations for control dampers and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Face velocity at Project design and minimum airflow conditions.
 - c. Pressure drop across damper at Project design and minimum airflow conditions.
 - d. AMCA 500-D damper installation arrangement used to calculate and schedule pressure drop, as applicable to installation.
 - e. Maximum close-off pressure.
 - f. Leakage airflow at maximum system pressure differential (fan close-off pressure).
 - g. Torque required at worst case condition for sizing actuator.
 - h. Actuator selection indicating torque provided.
 - i. Actuator signal to control damper (on, close or modulate).
 - j. Actuator position on loss of power.
 - k. Actuator position on loss of control signal.
 - 3. Schedule and design calculations for control valves and actuators.
 - a. Flow at Project design and minimum flow conditions.
 - b. Pressure-differential drop across valve at Project design flow condition.
 - c. Maximum system pressure-differential drop (pump close-off pressure) across valve at Project minimum flow condition.
 - d. Design and minimum control valve coefficient with corresponding valve position.
 - e. Maximum close-off pressure.
 - f. Leakage flow at maximum system pressure differential.

- g. Torque required at worst case condition for sizing actuator.
- h. Actuator selection indicating torque provided.
- i. Actuator signal to control damper (on, close or modulate).
- j. Actuator position on loss of power.
- k. Actuator position on loss of control signal.
- 4. Schedule and design calculations for selecting flow instruments.
 - a. Instrument flow range.
 - b. Project design and minimum flow conditions with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - c. Extreme points of extended flow range with corresponding accuracy, control signal to transmitter and output signal for remote control.
 - d. Pressure-differential loss across instrument at Project design flow conditions.
 - e. Where flow sensors are mated with pressure transmitters, provide information for each instrument separately and as an operating pair.

1.6 INFORMATIONAL SUBMITTALS

A. Coordination Drawings:

- 1. Plan drawings and corresponding product installation details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - a. Product installation location shown in relationship to room, duct, pipe and equipment.
 - b. Structural members to which products will be attached.
 - c. Wall-mounted instruments located in finished space showing relationship to light switches, fire-alarm devices and other installed devices.
 - d. Size and location of wall access panels for products installed behind walls and requiring access.
- 2. Reflected ceiling plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - a. Ceiling components.
 - b. Size and location of access panels for products installed above inaccessible ceiling assemblies and requiring access.
 - c. Items penetrating finished ceiling including the following:
 - 1) Lighting fixtures.
 - 2) Air outlets and inlets.
 - 3) Speakers.
 - 4) Sprinklers.
 - 5) Access panels.
 - 6) Motion sensors.
 - 7) Pressure sensors.
 - 8) Temperature sensors and other DDC control system instruments.

B. Product Certificates:

- 1. Data Communications Protocol Certificates: Certifying that each proposed DDC system component complies with ASHRAE 135.
- C. Preconstruction Test Reports: For each separate test performed.
- D. Source quality-control reports.
- E. Field quality-control reports.
- F. Sample Warranty: For manufacturer's warranty.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For DDC system to include in emergency, operation and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Project Record Drawings of as-built versions of submittal Shop Drawings provided in electronic PDF format.
 - b. Testing and commissioning reports and checklists of completed final versions of reports, checklists, and trend logs.
 - c. As-built versions of submittal Product Data.
 - d. Names, addresses, e-mail addresses and 24-hour telephone numbers of Installer and service representatives for DDC system and products.
 - e. Operator's manual with procedures for operating control systems including logging on and off, handling alarms, producing point reports, trending data, overriding computer control and changing set points and variables.
 - f. Programming manuals with description of programming language and syntax, of statements for algorithms and calculations used, of point database creation and modification, of program creation and modification, and of editor use.
 - g. Engineering, installation, and maintenance manuals that explain how to:
 - 1) Design and install new points, panels, and other hardware.
 - 2) Perform preventive maintenance and calibration.
 - 3) Debug hardware problems.
 - 4) Repair or replace hardware.
 - h. Documentation of all programs created using custom programming language including set points, tuning parameters, and object database.
 - i. Backup copy of graphic files, programs, and database on electronic media such as DVDs.
 - j. List of recommended spare parts with part numbers and suppliers.
 - k. Complete original-issue documentation, installation, and maintenance information for furnished third-party hardware including computer equipment and sensors.

- Complete original-issue copies of furnished software, including operating systems, custom programming language, operator workstation software, and graphics software.
- m. Licenses, guarantees, and warranty documents.
- n. Recommended preventive maintenance procedures for system components, including schedule of tasks such as inspection, cleaning, and calibration; time between tasks; and task descriptions.
- o. Owner training materials.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials and parts that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
- B. Include product manufacturers' recommended parts lists for proper product operation over fouryear period following warranty period. Parts list shall be indicated for each year.
- C. Furnish parts, as indicated by manufacturer's recommended parts list, for product operation during one-year period following warranty period.
- D. Furnish quantity indicated of matching product(s) in Project inventory for each unique size and type of following:
 - 1. Network Controller: One.
 - 2. Programmable Application Controller: One.
 - 3. Application-Specific Controller: One.
 - 4. Carbon Dioxide Sensor and Transmitter: One.
 - 5. Moisture Sensor and Transmitter: One.
 - 6. Pressure Sensor and Transmitter: One.
 - 7. Temperature Sensor and Transmitter: One.
 - 8. General-Purpose Relay: One.
 - 9. Multifunction Time-Delay Relay: One.
 - 10. Latching Relay: One.
 - 11. Current-Sensing Relay: One.
 - 12. Combination On-Off Status Sensor and On-Off Relay: One.
 - 13. Transformer: One.
 - 14. DC Power Supply: One.
 - 15. Supply of 20 percent spare fiber-optic cable splice organizer cabinets for several reterminations.

1.9 QUALITY ASSURANCE

- A. DDC System Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of DDC systems and products.
 - 2. DDC systems with similar requirements to those indicated for a continuous period of five years within time of bid.

- 3. DDC systems and products that have been successfully tested and in use on at least three past projects.
- 4. Having complete published catalog literature, installation, operation and maintenance manuals for all products intended for use.
- 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing and quality control.
 - d. Technical support for DDC system installation training, commissioning and troubleshooting of installations.
 - e. Owner operator training.

B. DDC System Provider Qualifications:

- 1. Authorized representative of, and trained by, DDC system manufacturer.
- 2. In-place facility located within 60 miles of Project.
- 3. Demonstrated past experience with installation of DDC system products being installed for period within three consecutive years before time of bid.
- 4. Demonstrated past experience on five projects of similar complexity, scope and value.
- 5. Each person assigned to Project shall have demonstrated past experience.
- 6. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
- 7. Service and maintenance staff assigned to support Project during warranty period.
- 8. Product parts inventory to support on-going DDC system operation for a period of not less than 5 years after Substantial Completion.
- 9. DDC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.

1.10 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace products that fail in materials or workmanship within specified warranty period.
 - 1. Failures shall be adjusted, repaired, or replaced at no additional cost or reduction in service to Owner.
 - 2. Include updates or upgrades to software and firmware if necessary to resolve deficiencies.
 - a. Install updates only after receiving Owner's written authorization.
 - 3. Warranty service shall occur during normal business hours and commence within 24 hours of Owner's warranty service request.
 - 4. Warranty Period: Two year(s) from date of Substantial Completion.
 - a. For Gateway: Two-year parts and labor warranty for each.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Alerton Inc.
 - 2. Johnson Controls, Inc.
 - 3. Siemens Building Technologies, Inc.
 - 4. Trane.

2.2 DDC SYSTEM DESCRIPTION

- A. Microprocessor-based monitoring and control including analog/digital conversion and program logic. A control loop or subsystem in which digital and analog information is received and processed by a microprocessor, and digital control signals are generated based on control algorithms and transmitted to field devices to achieve a set of predefined conditions.
 - 1. DDC system shall consist of a peer-to-peer network of distributed DDC controllers, other network devices, operator interfaces, and software.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer, as defined in Section 014000 "Quality Requirements," to design DDC system to satisfy requirements indicated.
- B. Delegated Design: Engage a qualified professional to design DDC system to satisfy requirements indicated.
 - 1. System Performance Objectives:
 - a. DDC system shall manage HVAC systems.
 - b. DDC system control shall operate HVAC systems to achieve optimum operating costs while using least possible energy and maintaining specified performance.
 - c. DDC system shall respond to power failures, HVAC equipment failures, and adverse and emergency conditions encountered through connected I/O points.
 - d. DDC system shall operate while unattended by an operator and through operator interaction.
 - e. DDC system shall record trends and transaction of events and produce report information such as performance, energy, occupancies, and equipment operation.

C. Surface-Burning Characteristics: Products installed in ducts, equipment, and return-air paths shall comply with ASTM E 84; testing by a qualified testing agency. Identify products with appropriate markings of applicable testing agency.

Flame-Spread Index: 25 or less.
 Smoke-Developed Index: 50 or less.

D. DDC System Speed:

1. Response Time of Connected I/O:

- a. AI point values connected to DDC system shall be updated at least every two seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
- b. BI point values connected to DDC system shall be updated at least every two seconds for use by DDC controllers. Points used globally shall also comply with this requirement.
- c. AO points connected to DDC system shall begin to respond to controller output commands within two second(s). Global commands shall also comply with this requirement.
- d. BO point values connected to DDC system shall respond to controller output commands within two second(s). Global commands shall also comply with this requirement.

2. Display of Connected I/O:

- a. Analog point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.
- b. Binary point COV connected to DDC system shall be updated and displayed at least every five seconds for use by operator.
- c. Alarms of analog and digital points connected to DDC system shall be displayed within 15 seconds of activation or change of state.
- d. Graphic display refresh shall update within four seconds.
- e. Point change of values and alarms displayed from workstation to workstation when multiple operators are viewing from multiple workstations shall not exceed graphic refresh rate indicated.
- E. Network Bandwidth: Design each network of DDC system to include at least 30 percent available spare bandwidth with DDC system operating under normal and heavy load conditions indicated. Calculate bandwidth usage, and apply a safety factor to ensure that requirement is satisfied when subjected to testing under worst case conditions.

F. DDC System Data Storage:

- 1. Include server(s) with disk drive data storage to archive not less than 24 consecutive months of historical data for all I/O points connected to system, including alarms, event histories, transaction logs, trends and other information indicated.
- 2. When logged onto a server, operator shall be able to also interact with any DDC controller connected to DDC system as required for functional operation of DDC system.

- 3. Server(s) shall be used for application configuration; for archiving, reporting and trending of data; for operator transaction archiving and reporting; for network information management; for alarm annunciation; and for operator interface tasks and controls application management.
- 4. Server(s) shall use IT industry-standard database platforms such as Microsoft SQL Server and Microsoft Data Engine (MSDE).

G. Future Expandability:

- 1. DDC system size shall be expandable to an ultimate capacity of at least two times total I/O points indicated.
- 2. Additional DDC controllers, I/O and associated wiring shall be all that is needed to achieve ultimate capacity. Initial network infrastructure shall be designed and installed to support ultimate capacity.
- 3. Operator interfaces installed initially shall not require hardware and software additions and revisions for ultimate capacity.

H. Environmental Conditions for Controllers, Gateways, and Routers:

- 1. Products shall operate without performance degradation under ambient environmental temperature, pressure and humidity conditions encountered for installed location.
 - a. If product alone cannot comply with requirement, install product in a protective enclosure that is isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by product and application.
- 2. Products shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Products not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 - a. Outdoors: Type 4.
 - b. Indoors, Heated with Filtered Ventilation: Type 1.
 - c. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 - d. Indoors, Heated and Air Conditioned: Type 1.
 - e. Mechanical Equipment Rooms: Type 2.

I. Environmental Conditions for Instruments and Actuators:

- 1. Instruments and actuators shall operate without performance degradation under the ambient environmental temperature, pressure, humidity, and vibration conditions specified and encountered for installed location.
 - a. If instruments and actuators alone cannot comply with requirement, install instruments and actuators in protective enclosures that are isolated and protected from conditions impacting performance. Enclosure shall be internally insulated, electrically heated, cooled and ventilated as required by instrument and application.

- 2. Instruments, actuators and accessories shall be protected with enclosures satisfying the following minimum requirements unless more stringent requirements are indicated. Instruments and actuators not available with integral enclosures complying with requirements indicated shall be housed in protective secondary enclosures. Installed location shall dictate the following NEMA 250 enclosure requirements:
 - a. Outdoors: Type 4.
 - b. Indoors, Heated with Filtered Ventilation: Type 1.
 - c. Indoors, Heated with Non-Filtered Ventilation: Type 2.
 - d. Indoors, Heated and Air Conditioned: Type 1.
 - e. Mechanical Equipment Rooms: Type 2.

J. DDC System Reliability:

- 1. Design, install and configure DDC controllers, gateways, and routers to yield a MTBF of at least 40,000 hours, based on a confidence level of at least 90 percent. MTBF value shall include any failure for any reason to any part of products indicated.
- 2. If required to comply with MTBF indicated, include DDC system and product redundancy to maintain DCC system, and associated systems and equipment that are being controlled, operational and under automatic control.
- 3. Critical systems and equipment that require a higher degree of DDC system redundancy than MTBF indicated shall be indicated on Drawings.

K. Electric Power Quality:

- 1. Power-Line Surges:
 - a. ProtectDDC system products connected to ac power circuits from power-line surges to comply with requirements of IEEE C62.41.
 - b. Do not use fuses for surge protection.
 - c. Test protection in the normal mode and in the common mode, using the following two waveforms:
 - 1) 10-by-1000-mic.sec. waveform with a peak voltage of 1500 V and a peak current of 60 A.
 - 2) 8-by-20-mic.sec. waveform with a peak voltage of 1000 V and a peak current of 500 A.
- 2. Ground Fault: Protect products from ground fault by providing suitable grounding. Products shall not fail due to ground fault condition.

L. Continuity of Operation after Electric Power Interruption:

1. Equipment and associated factory-installed controls, field-installed controls, electrical equipment, and power supply connected to building normal and backup power systems shall automatically return equipment and associated controls to operating state occurring immediately before loss of normal power, without need for manual intervention by operator when power is restored either through backup power source or through normal power if restored before backup power is brought online.

2.4 DDC EQUIPMENT

- A. Operator Workstation: One PC-based microcomputer(s) with minimum configuration as follows:
 - 1. Motherboard: With 8 integrated USB 2.0 ports, integrated Intel Pro 10/100 (Ethernet), integrated audio, bios, and hardware monitoring.
 - 2. Processor: Intel Pentium Core 2 Duo, 3.2 GHz.
 - 3. Random-Access Memory: 6 GB.
 - 4. Graphics: Video adapter, minimum 1600 x 1200 pixels, 512-MB video memory, with TV out.
 - 5. Monitor: 19 inches, LCD color.
 - 6. Keyboard: QWERTY, 105 keys in ergonomic shape.
 - 7. Floppy-Disk Drive: 1.44 MB.
 - 8. Hard-Disk Drive: 1 TB.
 - 9. DVD-ROM Read/Write Drive: 16x.
 - 10. Mouse: Three button, optical.
 - 11. Uninterruptible Power Supply: 2 kVa.
 - 12. Operating System: Microsoft Windows 7 Professional 64 bit with high-speed Internet access.
 - a. ASHRAE 135 Compliance: Workstation shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

13. Application Software:

- a. I/O capability from operator station.
- b. System security for each operator via software password and access levels.
- c. Automatic system diagnostics; monitor system and report failures.
- d. Database creation and support.
- e. Automatic and manual database save and restore.
- f. Dynamic color graphic displays with up to 10 screen displays at once.
- g. Custom graphics generation and graphics library of HVAC equipment and symbols.
- h. Alarm processing, messages, and reactions.
- i. Trend logs retrievable in spreadsheets and database programs.
- j. Alarm and event processing.
- k. Object and property status and control.
- 1. Automatic restart of field equipment on restoration of power.
- m. Data collection, reports, and logs. Include standard reports for the following:
 - 1) Current values of all objects.
 - 2) Current alarm summary.
 - 3) Disabled objects.
 - 4) Alarm lockout objects.
 - 5) Logs.
- n. Custom report development.
- o. Utility and weather reports.
- p. Workstation application editors for controllers and schedules.

- q. Maintenance management.
- 14. Custom Application Software:
 - a. English language oriented.
 - b. Full-screen character editor/programming environment.
 - c. Allow development of independently executing program modules with debugging/simulation capability.
 - d. Support conditional statements.
 - e. Support floating-point arithmetic with mathematic functions.
 - f. Contains predefined time variables.
- B. Control Units: Modular, comprising processor board with programmable, nonvolatile, random-access memory; local operator access and display panel; integral interface equipment; and backup power source.
 - 1. Units monitor or control each I/O point; process information; execute commands from other control units, devices, and operator stations; and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - d. Software applications, scheduling, and alarm processing.
 - e. Testing and developing control algorithms without disrupting field hardware and controlled environment.
 - 3. Standard Application Programs:
 - a. Electric Control Programs: Demand limiting, duty cycling, automatic time scheduling, start/stop time optimization, night setback/setup, on-off control with differential sequencing, staggered start, antishort cycling, PID control, DDC with fine tuning, and trend logging.
 - b. HVAC Control Programs: Optimal run time, supply-air reset, and enthalpy switchover.
 - c. Chiller Control Programs: Control function of condenser-water reset, chilled-water reset, and equipment sequencing.
 - d. Programming Application Features: Include trend point; alarm processing and messaging; weekly, monthly, and annual scheduling; energy calculations; run-time totalization; and security access.
 - e. Remote communications.
 - f. Maintenance management.
 - g. Units of Measure: Inch-pound and SI (metric).
 - 4. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 5. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.

- C. Local Control Units: Modular, comprising processor board with electronically programmable, nonvolatile, read-only memory; and backup power source.
 - 1. Units monitor or control each I/O point, process information, and download from or upload to operator workstation or diagnostic terminal unit.
 - 2. Stand-alone mode control functions operate regardless of network status. Functions include the following:
 - a. Global communications.
 - b. Discrete/digital, analog, and pulse I/O.
 - c. Monitoring, controlling, or addressing data points.
 - 3. Local operator interface provides for download from or upload to operator workstation or diagnostic terminal unit.
 - 4. ASHRAE 135 Compliance: Control units shall use ASHRAE 135 protocol and communicate using ISO 8802-3 (Ethernet) datalink/physical layer protocol.
- D. I/O Interface: Hardwired inputs and outputs may tie into system through controllers. Protect points so that shorting will cause no damage to controllers.
 - 1. Binary Inputs: Allow monitoring of on-off signals without external power.
 - 2. Pulse Accumulation Inputs: Accept up to 10 pulses per second.
 - 3. Analog Inputs: Allow monitoring of low-voltage (0- to 10-V dc), current (4 to 20 mA), or resistance signals.
 - 4. Binary Outputs: Provide on-off or pulsed low-voltage signal, selectable for normally open or normally closed operation.
 - 5. Analog Outputs: Provide modulating signal, either low voltage (0- to 10-V dc) or current (4 to 20 mA).
 - 6. Tri-State Outputs: Provide two coordinated binary outputs for control of three-point, floating-type electronic actuators.
 - 7. Universal I/Os: Provide software selectable binary or analog outputs.
- E. Power Supplies: Transformers with Class 2 current-limiting type or overcurrent protection; limit connected loads to 80 percent of rated capacity. DC power supply shall match output current and voltage requirements and be full-wave rectifier type with the following:
 - 1. Output ripple of 5.0 mV maximum peak to peak.
 - 2. Combined 1 percent line and load regulation with 100-mic.sec. response time for 50 percent load changes.
 - 3. Built-in overvoltage and overcurrent protection and be able to withstand 150 percent overload for at least 3 seconds without failure.
- F. Power Line Filtering: Internal or external transient voltage and surge suppression for workstations or controllers with the following:
 - 1. Minimum dielectric strength of 1000 V.
 - 2. Maximum response time of 10 nanoseconds.
 - 3. Minimum transverse-mode noise attenuation of 65 dB.
 - 4. Minimum common-mode noise attenuation of 150 dB at 40 to 100 Hz.

2.5 UNITARY CONTROLLERS

- A. Unitized, capable of stand-alone operation with sufficient memory to support its operating system, database, and programming requirements, and with sufficient I/O capacity for the application.
 - 1. Configuration: Local keypad and display; diagnostic LEDs for power, communication, and processor; wiring termination to terminal strip or card connected with ribbon cable; memory with bios; and 72-hour battery backup.
 - 2. Operating System: Manage I/O communication to allow distributed controllers to share real and virtual object information and allow central monitoring and alarms.Perform automatic system diagnostics; monitor system and report failures.
 - 3. ASHRAE 135 Compliance: Communicate using read (execute and initiate) and write (execute and initiate) property services defined in ASHRAE 135. Reside on network using MS/TP datalink/physical layer protocol and have service communication port for connection to diagnostic terminal unit.
 - 4. Enclosure: Dustproof rated for operation at 32 to 120 deg F.
 - 5. Enclosure: Waterproof rated for operation at 40 to 150 deg F.

2.6 ANALOG CONTROLLERS

- A. Step Controllers: 6- or 10-stage type, with heavy-duty switching rated to handle loads and operated by electric motor.
- B. Electric, Outdoor-Reset Controllers: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range, adjustable set point, scale range minus 10 to plus 70 deg F, and single- or double-pole contacts.
- C. Electronic Controllers: Wheatstone-bridge-amplifier type, in steel enclosure with provision for remote-resistance readjustment. Identify adjustments on controllers, including proportional band and authority.
 - 1. Single controllers can be integral with control motor if provided with accessible control readjustment potentiometer.
- D. Fan-Speed Controllers: Solid-state model providing field-adjustable proportional control of motor speed from maximum to minimum of 55 percent and on-off action below minimum fan speed. Controller shall briefly apply full voltage, when motor is started, to rapidly bring motor up to minimum speed. Equip with filtered circuit to eliminate radio interference.
- E. Receiver Controllers: Single- or multiple-input models with control-point adjustment, direct or reverse acting with mechanical set-point adjustment with locking device, proportional band adjustment, authority adjustment, and proportional control mode.
 - 1. Remote-control-point adjustment shall be plus or minus 20 percent of sensor span, input signal of 3 to 13 psig.
 - 2. Proportional band shall extend from 2 to 20 percent for 5 psig.
 - 3. Authority shall be 20 to 200 percent.

- 4. Air-supply pressure of 18 psig, input signal of 3 to 15 psig, and output signal of zero to supply pressure.
- 5. Gages: 3-1/2 inches in diameter, 2.5 percent wide-scale accuracy, and range to match transmitter input or output pressure.

2.7 ELECTRONIC SENSORS

- A. Description: Vibration and corrosion resistant; for wall, immersion, or duct mounting as required.
- B. Thermistor Temperature Sensors and Transmitters:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. Ebtron, Inc.
 - c. Heat-Timer Corporation.
 - d. I.T.M. Instruments Inc.
 - e. MAMAC Systems, Inc.
 - f. RDF Corporation.
 - 2. Accuracy: Plus or minus 0.5 deg F at calibration point.
 - 3. Wire: Twisted, shielded-pair cable.
 - 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
 - 5. Averaging Elements in Ducts: 36 inches long, flexible; use where prone to temperature stratification or where ducts are larger than 10 sq. ft..
 - 6. Insertion Elements for Liquids: Brass or stainless-steel socket with minimum insertion length of 2-1/2 inches.
 - 7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.

C. RTDs and Transmitters:

- 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. MAMAC Systems, Inc.
 - c. RDF Corporation.
- 2. Accuracy: Plus or minus 0.2 percent at calibration point.
- 3. Wire: Twisted, shielded-pair cable.
- 4. Insertion Elements in Ducts: Single point, 8 inches long; use where not affected by temperature stratification or where ducts are smaller than 9 sq. ft..
- 5. Averaging Elements in Ducts: 48 inches long, rigid; use where prone to temperature stratification or where ducts are larger than 9 sq. ft.; length as required.
- 6. Insertion Elements for Liquids: Brass socket with minimum insertion length of 2-1/2 inches.

- 7. Outside-Air Sensors: Watertight inlet fitting, shielded from direct sunlight.
- D. Humidity Sensors: Bulk polymer sensor element.
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Accuracy: 2 percent full range with linear output.
 - 3. Duct Sensor: 20 to 80 percent relative humidity range with element guard and mounting plate.
 - 4. Outside-Air Sensor: 20 to 80 percent relative humidity range with mounting enclosure, suitable for operation at outdoor temperatures of minus 22 to plus 185 deg F.
 - 5. Duct and Sensors: With element guard and mounting plate, range of 0 to 100 percent relative humidity.
- E. Pressure Transmitters/Transducers:
 - 1. Manufacturers:
 - a. BEC Controls Corporation.
 - b. General Eastern Instruments.
 - c. MAMAC Systems, Inc.
 - d. ROTRONIC Instrument Corp.
 - e. TCS/Basys Controls.
 - f. Vaisala.
 - 2. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - a. Accuracy: 2 percent of full scale with repeatability of 0.5 percent.
 - b. Output: 4 to 20 mA.
 - c. Building Static-Pressure Range: 0- to 0.25-inch wg.
 - d. Duct Static-Pressure Range: 0- to 5-inch wg.
 - 3. Water Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure; linear output 4 to 20 mA.
 - 4. Water Differential-Pressure Transducers: Stainless-steel diaphragm construction, suitable for service; minimum 150-psig operating pressure and tested to 300-psig; linear output 4 to 20 mA.
 - 5. Differential-Pressure Switch (Air or Water): Snap acting, with pilot-duty rating and with suitable scale range and differential.
 - 6. Pressure Transmitters: Direct acting for gas, liquid, or steam service; range suitable for system; linear output 4 to 20 mA.

- F. Room Sensor Cover Construction: Manufacturer's standard locking covers.
 - 1. Set-Point Adjustment: Concealed.
 - 2. Set-Point Indication: Concealed.
 - 3. Thermometer: Concealed.
 - 4. Color: To be selected from manufacturer standard colors in submittal process
 - 5. Orientation: Vertical.

2.8 STATUS SENSORS

- A. Status Inputs for Fans: Differential-pressure switch with pilot-duty rating and with adjustable range of 0- to 5-inch wg.
- B. Status Inputs for Pumps: Differential-pressure switch with pilot-duty rating and with adjustable pressure-differential range of 8 to 60 psig, piped across pump.
- C. Status Inputs for Electric Motors: Comply with ISA 50.00.01, current-sensing fixed- or split-core transformers with self-powered transmitter, adjustable and suitable for 175 percent of rated motor current.
- D. Voltage Transmitter (100- to 600-V ac): Comply with ISA 50.00.01, single-loop, self-powered transmitter, adjustable, with suitable range and 1 percent full-scale accuracy.
- E. Power Monitor: 3-phase type with disconnect/shorting switch assembly, listed voltage and current transformers, with pulse kilowatt hour output and 4- to 20-mA kW output, with maximum 2 percent error at 1.0 power factor and 2.5 percent error at 0.5 power factor.
- F. Current Switches: Self-powered, solid-state with adjustable trip current, selected to match current and system output requirements.
- G. Electronic Valve/Damper Position Indicator: Visual scale indicating percent of travel and 2- to 10-V dc, feedback signal.

2.9 THERMOSTATS

- A. Electric, solid-state, microcomputer-based room thermostat with remote sensor.
 - 1. Automatic switching from heating to cooling.
 - 2. Preferential rate control to minimize overshoot and deviation from set point.
 - 3. Set up for four separate temperatures per day.
 - 4. Instant override of set point for continuous or timed period from 1 hour to 31 days.
 - 5. Short-cycle protection.
 - 6. Programming based on every day of week.
 - 7. Selection features include degree F or degree C display, 12- or 24-hour clock, keyboard disable, remote sensor, and fan on-auto.
 - 8. Battery replacement without program loss.
 - 9. Thermostat display features include the following:

- a. Time of day.
- b. Actual room temperature.
- c. Programmed temperature.
- d. Programmed time.
- e. Duration of timed override.
- f. Day of week.
- g. System mode indications include "heating," "off," "fan auto," and "fan on."
- B. Immersion Thermostat: Remote-bulb or bimetal rod-and-tube type, proportioning action with adjustable throttling range and adjustable set point.
- C. Airstream Thermostats: Two-pipe, fully proportional, single-temperature type; with adjustable set point in middle of range, adjustable throttling range, plug-in test fitting or permanent pressure gage, remote bulb, bimetal rod and tube, or averaging element.

2.10 HUMIDISTATS

A. Duct-Mounting Humidistats: Electric insertion, 2-position type with adjustable, 2 percent throttling range, 20 to 80 percent operating range, and single- or double-pole contacts.

2.11 ACTUATORS

- A. Electric Motors: Size to operate with sufficient reserve power to provide smooth modulating action or two-position action.
 - 1. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 2. Permanent Split-Capacitor or Shaded-Pole Type: Gear trains completely oil immersed and sealed. Equip spring-return motors with integral spiral-spring mechanism in housings designed for easy removal for service or adjustment of limit switches, auxiliary switches, or feedback potentiometer.
 - 3. Nonspring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 - 4. Spring-Return Motors for Valves Larger Than NPS 2-1/2: Size for running and breakaway torque of 150 in. x lbf.
 - 5. Nonspring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running torque of 150 in. x lbf and breakaway torque of 300 in. x lbf.
 - 6. Spring-Return Motors for Dampers Larger Than 25 Sq. Ft.: Size for running and breakaway torque of 150 in. x lbf.
- B. Electronic Actuators: Direct-coupled type designed for minimum 60,000 full-stroke cycles at rated torque.
 - 1. Valves: Size for torque required for valve close off at maximum pump differential pressure.
 - 2. Dampers: Size for running torque calculated as follows:
 - a. Parallel-Blade Damper with Edge Seals: 7 inch-lb/sq. ft. of damper.

- b. Opposed-Blade Damper with Edge Seals: 5 inch-lb/sq. ft. of damper.
- c. Parallel-Blade Damper without Edge Seals: 4 inch-lb/sq. ft of damper.
- d. Opposed-Blade Damper without Edge Seals: 3 inch-lb/sq. ft. of damper.
- e. Dampers with 2- to 3-Inch wg of Pressure Drop or Face Velocities of 1000 to 2500 fpm: Increase running torque by 1.5.
- f. Dampers with 3- to 4-Inch wg of Pressure Drop or Face Velocities of 2500 to 3000 fpm: Increase running torque by 2.0.
- 3. Coupling: V-bolt and V-shaped, toothed cradle.
- 4. Overload Protection: Electronic overload or digital rotation-sensing circuitry.
- 5. Fail-Safe Operation: Mechanical, spring-return mechanism. Provide external, manual gear release on nonspring-return actuators.
- 6. Power Requirements (Two-Position Spring Return): 24-V ac.
- 7. Power Requirements (Modulating): Maximum 10 VA at 24-V ac or 8 W at 24-V dc.
- 8. Proportional Signal: 2- to 10-V dc or 4 to 20 mA, and 2- to 10-V dc position feedback signal.
- 9. Temperature Rating: Minus 22 to plus 122 deg F.
- 10. Temperature Rating (Smoke Dampers): Minus 22 to plus 250 deg F.
- 11. Run Time: 12 seconds open, 5 seconds closed.

2.12 DAMPERS

- A. Available Manufacturers:
 - 1. Air Balance Inc.
 - 2. Don Park Inc.; Autodamp Div.
 - 3. TAMCO (T. A. Morrison & Co. Inc.).
 - 4. United Enertech Corp.
 - 5. Vent Products Company, Inc.
- B. Dampers: AMCA-rated, parallel or opposed-blade design; 0.108-inch-minimum thick, galvanized-steel or 0.125-inch-minimum thick, extruded-aluminum frames with holes for duct mounting; damper blades shall not be less than 0.064-inch-thick galvanized steel with maximum blade width of 8 inches and length of 48 inches.
 - 1. Secure blades to 1/2-inch-diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade.
 - 2. Operating Temperature Range: From minus 40 to plus 200 deg F.
 - 3. Edge Seals, Standard Pressure Applications: Closed-cell neoprene.
 - 4. Edge Seals, Low-Leakage Applications: Use inflatable blade edging or replaceable rubber blade seals and spring-loaded stainless-steel side seals, rated for leakage at less than 10 cfm per sq. ft. of damper area, at differential pressure of 4-inch wg when damper is held by torque of 50 in. x lbf; when tested according to AMCA 500D.

2.13 NETWORK COMMUNICATION PROTOCOL

A. Network communication protocol(s) used throughout entire DDC system shall be open to public and available to other companies for use in making future modifications to DDC system.

B. ASHRAE 135 Protocol:

- 1. ASHRAE 135 communication protocol shall be sole and native protocol used throughout entire DDC system.
- 2. DDC system shall not require use of gateways except to integrate HVAC equipment and other building systems and equipment, not required to use ASHRAE 135 communication protocol.
- 3. If used, gateways shall connect to DDC system using ASHRAE 135 communication protocol and Project object properties and read/write services indicated by interoperability schedule.
- 4. Operator workstations, controllers and other network devices shall be tested and listed by BACnet Testing Laboratories.

2.14 DDC SYSTEM WIRELESS NETWORKS

- A. Use Zigbee or an open industry standard and technology used by multiple DDC system manufacturers technology to create a wireless mesh network to provide wireless connectivity for network devices at multiple system levels including communications from programmable application controllers and application-specific controllers to temperature sensors and from network controllers to programmable application controllers and application-specific controllers.
- B. Installer shall design wireless networks to comply with DDC system performance requirements indicated. Wireless network devices shall co-exist on same network with hardwired devices.
- C. Hardwired controllers shall be capable of retrofit to wireless devices with no special software.
- D. A wireless coordinator shall provide a wireless interface between programmable application controllers, application-specific controllers, and network controllers.

E. Wireless Coordinators:

- 1. Each wireless mesh network shall use wireless coordinator(s) for initiation and formation of network.
- 2. Use direct sequence spread spectrum RF technology.
- 3. Operate on the 2.4-GHz ISM Band.
- 4. Comply with IEEE 802.15.4 for low-power, low duty-cycle RF transmitting systems.
- 5. FCC compliant to 47 CFR 15, Subpart B, Class A.
- 6. Operate as a bidirectional transceiver with sensors and routers to confirm and synchronize data transmission.
- 7. Capable of communication with sensors and routers up to a maximum distance of 250 feet in line of sight.
- 8. Include visual indicators to provide diagnostic information required for operator verification of operation.

F. Wireless Routers:

- 1. Each wireless mesh network shall use wireless routers with any controller to provide a wireless interface to a network controller, through a wireless coordinator.
- 2. Use direct sequence spread spectrum RF technology.
- 3. Operate on the 2.4-GHz ISM Band.
- 4. Comply with IEEE 802.15.4 for low-power, low duty-cycle RF transmitting systems.
- 5. FCC compliant to 47 CFR 15, Subpart B, Class A.
- 6. Operate as a bidirectional transceiver with other mesh network devices to ensure network integrity.
- 7. Capable of communication with other mesh network devices at a maximum distance of 250 feet in line of sight.
- 8. Include indication for use in commissioning and troubleshooting.

G. Wireless Temperature Sensors:

- 1. Wireless temperature sensors shall sense and transmit room temperatures, temperature set point, room occupancy notification and low battery condition to an associated router.
- 2. Use direct sequence spread spectrum RF technology.
- 3. Operate on the 2.4-GHz ISM Band.
- 4. Comply with IEEE 802.15.4 for low-power, low duty-cycle RF transmitting systems.
- 5. FCC compliant to CFR 15, Subpart B, Class A.
- 6. Include set point adjustment between 55 to 85 deg F.
- 7. Multiple sensors shall be able to report to a router connected to a DDC controller for averaging or high and low selection.

H. One-to-One Wireless Network Receivers:

- 1. One-to-one wireless receivers shall receive wireless RF signals containing temperature data from multiple wireless room temperature sensors and communicate information to programmable application controllers or application-specific controllers.
 - a. Use direct sequence spread spectrum RF technology.
 - b. Operate on the 2.4-GHz ISM Band.
 - c. Comply with IEEE 802.15.4 for low-power, low duty-cycle RF transmitting systems.
 - d. FCC compliant to 47 CFR 15, Subpart B, Class A.
 - e. Operate as a bidirectional transceiver with the sensors to confirm and synchronize data transmission.
 - f. Capable of communication up to a distance of 200 feet.
 - g. Include visual indication of the following:
 - 1) Power.
 - 2) Receiver activity.
 - 3) Wireless RF transmission from wireless sensors.
 - 4) No transmission, weak signal, adequate signal or excellent signal.

I. One-to-One Wireless Network Sensors:

- 1. One-to-one wireless sensors shall sense and report room temperatures to one-to-one receiver.
 - a. Use direct sequence spread spectrum RF technology.
 - b. Operate on the 2.4-GHz ISM Band.
 - c. Comply with IEEE 802.15.4 for low-power, low duty-cycle RF transmitting systems.
 - d. FCC compliant to CFR 15, Subpart B, Class A.
 - e. Include set point adjustment between 55 to 85 deg F.

2.15 WIRELESS ROUTERS FOR OPERATOR INTERFACE

A. Single-Band Wireless Routers:

- 1. Description: High-speed router with integral Ethernet ports.
- 2. Technology: IEEE 802.11n; 2.4-GHz speed band.
- 3. Speed: Up to 300 Mbps.
- 4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
- 5. Ethernet Ports: Four, gigabit (1000 Mbps).
- 6. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

B. Dual-Band Wireless Routers:

- 1. Description: High-speed, dual-band router with integral Ethernet ports and USB port.
- 2. Technology: IEEE 802.11n; 2.4- and 5-GHz speed bands.
- 3. Speed: Up to 300 Mbps on 2.4-GHz band and up to 450 Mbps on 5-GHz band.
- 4. Compatibility: IEEE 802.11n/g/b/a wireless devices.
- 5. Ethernet Ports: Four, gigabit (1000 Mbps).
- 6. USB Port: One, USB 2.0 or 3.0.
- 7. Wireless Security: Wi-Fi Protected Access (WPA) and WPA2 according to IEEE 802.11i.

2.16 ELECTRICAL POWER DEVICES

A. Transformers:

- 1. Transformer shall be sized for the total connected load, plus an additional 25 percent of connected load.
- 2. Transformer shall be at least 40 VA.
- 3. Transformer shall have both primary and secondary fuses.

B. Power-Line Conditioner:

- 1. General Power-Line Conditioner Requirements:
 - a. Design to ensure maximum reliability, serviceability and performance.

- b. Overall function of the power-line conditioner is to receive raw, polluted electrical power and purify it for use by electronic equipment. The power-line conditioner shall provide isolated, regulated, transient and noise-free sinusoidal power to loads served.
- 2. Standards: NRTL listed per UL 1012.
- 3. Performance:
 - a. Single phase, continuous, 100 percent duty rated KVA/KW capacity. Design to supply power for linear or nonlinear, high crest factor, resistive and reactive loads.
 - b. Automatically regulate output voltage to within 2 percent or better with input voltage fluctuations of plus 10 to minus 20 percent of nominal when system is loaded 100 percent. Use Variable Range Regulation to obtain improved line voltage regulation when operating under less than full load conditions.
 - 1) At 75 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 35 percent of nominal.
 - 2) At 50 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 40 percent of nominal.
 - 3) At 25 Percent Load: Output voltage automatically regulated to within 3 percent with input voltage fluctuations of plus 10 to minus 45 percent of nominal.
 - c. With input voltage distortion of up to 40 percent, limit the output voltage sine wave to a maximum harmonic content of 5 percent.
 - d. Automatically regulate output voltage to within 2.5 percent when load (resistive) changes from zero percent to 100 percent to zero percent.
 - e. Output voltage returns to 95 percent of nominal level within two cycles and to 100 percent within three cycles when the output is taken from no load to full resistive load or vice-versa. Recovery from partial resistive load changes is corrected in a shorter period of time.
 - f. K Factor: 30, designed to operate with nonlinear, non-sinusoidal, high crest factor loads without overheating.
 - g. Input power factor within 0.95 approaching unity with load power factor as poor as 0.6
 - h. Attenuate load-generated odd current harmonics 23 dB at the input.
 - i. Electrically isolate the primary from the secondary. Meet isolation criteria as defined in NFPA 70, Article 250-5D.
 - j. Lighting and Surge Protection: Compares to UL 1449 rating of 330 V when subjected to Category B3 (6000 V/3000 A) combination waveform as established by IEEE C62.41.
 - k. Common-mode noise attenuation of 140 dB.
 - 1. Transverse-mode noise attenuation of 120 dB.
 - m. With loss of input power for up to 16.6 ms, the output sine wave remains at usable ac voltage levels.
 - n. Reliability of 200,000 hours' MTBF.
 - o. At full load, when measured at 1-m distance, audible noise is not to exceed 54 dB.
 - p. Approximately 92 percent efficient at full load.

4. Transformer Construction:

- a. Ferroresonant, dry type, convection cooled, 600V class. Transformer windings of Class H (220 deg C) insulated copper.
- b. Use a Class H installation system throughout with operating temperatures not to exceed 150 deg C over a 40-deg C ambient temperature.
- c. Configure transformer primary for multi-input voltage. Include input terminals for source conductors and ground.
- d. Manufacture transformer core using M-6 grade, grain-oriented, stress-relieved transformer steel.
- e. Configure transformer secondary in a 240/120-V split with a 208-V tap or straight 120 V, depending on power output size.
- f. Electrically isolate the transformer secondary windings from the primary windings. Bond neutral conductor to cabinet enclosure and output neutral terminal.
- g. Include interface terminals for output power hot, neutral and ground conductors.
- h. Label leads, wires and terminals to correspond with circuit wiring diagram.
- i. Vacuum impregnate transformer with epoxy resin.

5. Cabinet Construction:

- a. Design for panel or floor mounting.
- b. NEMA 250, Type 1, general-purpose, indoor enclosure.
- c. Manufacture the cabinet from heavy gauge steel complying with UL 50.
- d. Include a textured baked-on paint finish.

C. DC Power Supply:

- 1. Plug-in style suitable for mating with a standard eight-pin octal socket. Include the power supply with a mating mounting socket.
- 2. Enclose circuitry in a housing.
- 3. Include both line and load regulation to ensure a stable output. To protect both the power supply and the load, power supply shall have an automatic current limiting circuit.
- 4. Performance:
 - a. Output voltage nominally 25-V dc within 5 percent.
 - b. Output current up to 100 mA.
 - c. Input voltage nominally 120-V ac, 60 Hz.
 - d. Load regulation within 0.5 percent from zero- to 100-mA load.
 - e. Line regulation within 0.5 percent at a 100-mA load for a 10 percent line change.
 - f. Stability within 0.1 percent of rated volts for 24 hours after a 20-minute warmup.

2.17 CONTROL WIRE AND CABLE

- A. Wire: Single conductor control wiring above 24 V.
 - 1. Wire size shall be at least No. 16 AWG.
 - 2. Conductor shall be 7/24 soft annealed copper strand with 2- to 2.5-inch lay.
 - 3. Conductor insulation shall be 600 V, Type THWN or Type THHN, and 90 deg C according to UL 83.

- 4. Conductor colors shall be black (hot), white (neutral), and green (ground).
- 5. Furnish wire on spools.
- B. Single Twisted Shielded Instrumentation Cable above 24 V:
 - 1. Wire size shall be a minimum No. 18 AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper strand with a 2- to 2.5-inch lay.
 - 3. Conductor insulation shall have a Type THHN/THWN or Type TFN rating.
 - 4. Shielding shall be 100 percent type, 0.35/0.5-mil aluminum/Mylar tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 600-V, 90-deg C rating and shall be Type TC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- C. Single Twisted Shielded Instrumentation Cable 24 V and Less:
 - 1. Wire size shall be a minimum No. 18 AWG.
 - 2. Conductors shall be a twisted, 7/24 soft annealed copper stranding with a 2- to 2.5-inch lay.
 - 3. Conductor insulation shall have a nominal 15-mil thickness, constructed from flame-retardant PVC.
 - 4. Shielding shall be 100 percent type, 1.35-mil aluminum/polymer tape, helically applied with 25 percent overlap, and aluminum side in with tinned copper drain wire.
 - 5. Outer jacket insulation shall have a 300-V, 105-deg C rating and shall be Type PLTC cable.
 - 6. For twisted pair, conductor colors shall be black and white. For twisted triad, conductor colors shall be black, red and white.
 - 7. Furnish wire on spools.
- D. LAN and Communication Cable: Comply with DDC system manufacturer requirements for network being installed.
 - 1. Cable shall be plenum rated.
 - 2. Cable shall comply with NFPA 70.
 - 3. Cable shall have a unique color that is different from other cables used on Project.
 - 4. Copper Cable for Ethernet Network:
 - a. 100BASE-TX, 1000BASE-T or 1000BASE-TX.
 - b. TIA/EIA 586, Category 5e or Category 6.
 - c. Minimum No. 24 AWG solid.
 - d. Shielded Twisted Pair (STP) or Unshielded Twisted Pair (UTP).
 - e. Thermoplastic insulated conductors, enclosed in a thermoplastic outer jacket, Class CMP as plenum rated.

2.18 RACEWAYS FOR CONTROL WIRING, CABLING, AND TUBING

A. Metal Conduits, Tubing, and Fittings:

- 1. Listing and Labeling: Metal conduits, tubing, and fittings shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 2. GRC: Comply with NEMA ANSI C80.1 and UL 6.
- 3. ARC: Comply with NEMA ANSI C80.5 and UL 6A.
- 4. IMC: Comply with NEMA ANSI C80.6 and UL 1242.
- 5. PVC-Coated Steel Conduit: PVC-coated rigid steel conduit.
 - a. Comply with NEMA RN 1.
 - b. Coating Thickness: 0.040 inch, minimum.
- 6. EMT: Comply with NEMA ANSI C80.3 and UL 797.
- 7. FMC: Comply with UL 1; zinc-coated steel or aluminum.
- 8. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.
- 9. Fittings for Metal Conduit: Comply with NEMA ANSI FB 1 and UL 514B.
 - a. Conduit Fittings for Hazardous (Classified) Locations: Comply with UL 1203 and NFPA 70.
 - b. Fittings for EMT:
 - 1) Material: Steel or die cast.
 - 2) Type: Setscrew or compression.
 - c. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
 - d. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.
- 10. Joint Compound for IMC, GRC, or ARC: Approved, as defined in NFPA 70, by authorities having jurisdiction for use in conduit assemblies, and compounded for use to lubricate and protect threaded conduit joints from corrosion and to enhance their conductivity.

2.19 CONTROL POWER WIRING AND RACEWAYS

- A. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" electrical power conductors and cables.
- B. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

2.20 IDENTIFICATION

- A. Control Equipment, Instruments, and Control Devices:
 - 1. Engraved tag bearing unique identification.

a. Include instruments with unique identification identified by equipment being controlled or monitored, followed by point identification.

2. Letter size shall be as follows:

- a. Operator Workstations: Minimum of 0.5 inch high.
- b. Servers: Minimum of 0.5 inch high.
- c. Printers: Minimum of 0.5 inch high.
- d. DDC Controllers: Minimum of 0.5 inch high.
- e. Gateways: Minimum of 0.5 inch high.
- f. Repeaters: Minimum of 0.5 inch high.
- g. Enclosures: Minimum of 0.5 inch high.
- h. Electrical Power Devices: Minimum of 0.25 inch high.
- i. UPS units: Minimum of 0.5 inch high.
- j. Accessories: Minimum of 0.25 inch high.
- k. Instruments: Minimum of 0.25 inch high.
- 1. Control Damper and Valve Actuators: Minimum of 0.25 inch high.
- 3. Tag shall consist of white lettering on black background.
- 4. Tag shall be engraved phenolic consisting of three layers of rigid laminate. Top and bottom layers are color-coded black with contrasting white center exposed by engraving through outer layer.
- 5. Tag shall be fastened with drive pins.
- 6. Instruments, control devices and actuators with Project-specific identification tags having unique identification numbers following requirements indicated and provided by original manufacturer do not require an additional tag.

B. Raceway and Boxes:

- 1. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- 2. Paint cover plates on junction boxes and conduit same color as the tape banding for conduits. After painting, label cover plate "HVAC Controls," using an engraved phenolic tag.
- 3. For raceways housing air signal tubing, add a phenolic tag labeled "HVAC Air Signal Tubing."

C. Equipment Warning Labels:

- 1. Acrylic label with pressure-sensitive adhesive back and peel-off protective jacket.
- 2. Lettering size shall be at least 14-point type with white lettering on red background.
- 3. Warning label shall read "CAUTION-Equipment operated under remote automatic control and may start or stop at any time without warning. Switch electric power disconnecting means to OFF position before servicing."
- 4. Lettering shall be enclosed in a white line border. Edge of label shall extend at least 0.25 inchbeyond white border.

2.21 SOURCE QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to evaluate the following according to industry standards for each product, and to verify DDC system reliability specified in performance requirements:
 - 1. DDC controllers.
 - 2. Gateways.
 - 3. Routers.
 - 4. Operator workstations.
- B. Product(s) and material(s) will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
 - 1. Verify compatibility with and suitability of substrates.
- B. Examine roughing-in for products to verify actual locations of connections before installation.
 - 1. Examine roughing-in for instruments installed in piping to verify actual locations of connections before installation.
 - 2. Examine roughing-in for instruments installed in duct systems to verify actual locations of connections before installation.
- C. Examine walls, floors, roofs, and ceilings for suitable conditions where product will be installed.
- D. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install software in control units and operator workstation(s). Implement all features of programs to specified requirements and as appropriate to sequence of operation.
- B. Connect and configure equipment and software to achieve sequence of operation specified.
- C. Verify location of thermostats, humidistats, and other exposed control sensors with Drawings and room details before installation. Install devices 48 inches above the floor.

- 1. Install averaging elements in ducts and plenums in crossing or zigzag pattern.
- D. Install automatic dampers according to Section 233300 "Air Duct Accessories."
- E. Install damper motors on outside of duct in warm areas, not in locations exposed to outdoor temperatures.
- F. Install labels and nameplates to identify control components according to Section 230553 "Identification for HVAC Piping and Equipment."
- G. Install duct volume-control dampers according to Section 233113 "Metal Ducts."

3.3 ADJUSTING

A. Calibrating and Adjusting:

- 1. Calibrate instruments.
- 2. Make three-point calibration test for both linearity and accuracy for each analog instrument.
- 3. Calibrate equipment and procedures using manufacturer's written recommendations and instruction manuals. Use test equipment with accuracy at least double that of instrument being calibrated.
- 4. Control System Inputs and Outputs:
 - a. Check analog inputs at 0, 50, and 100 percent of span.
 - b. Check analog outputs using milliampere meter at 0, 50, and 100 percent output.
 - c. Check digital inputs using jumper wire.
 - d. Check digital outputs using ohmmeter to test for contact making or breaking.
 - e. Check resistance temperature inputs at 0, 50, and 100 percent of span using a precision-resistant source.

5. Flow:

- a. Set differential pressure flow transmitters for 0 and 100 percent values with 3-point calibration accomplished at 50, 90, and 100 percent of span.
- b. Manually operate flow switches to verify that they make or break contact.

6. Pressure:

- a. Calibrate pressure transmitters at 0, 50, and 100 percent of span.
- b. Calibrate pressure switches to make or break contacts, with adjustable differential set at minimum.

7. Temperature:

- a. Calibrate resistance temperature transmitters at 0, 50, and 100 percent of span using a precision-resistance source.
- b. Calibrate temperature switches to make or break contacts.

- 8. Stroke and adjust control valves and dampers without positioners, following the manufacturer's recommended procedure, so that valve or damper is 100 percent open and closed.
- 9. Stroke and adjust control valves and dampers with positioners, following manufacturer's recommended procedure, so that valve and damper is 0, 50, and 100 percent closed.
- 10. Provide diagnostic and test instruments for calibration and adjustment of system.
- 11. Provide written description of procedures and equipment for calibrating each type of instrument. Submit procedures review and approval before initiating startup procedures.
- B. Adjust initial temperature and humidity set points.

3.4 GENERAL INSTALLATION REQUIREMENTS

- A. Install products to satisfy more stringent of all requirements indicated.
- B. Install products level, plumb, parallel, and perpendicular with building construction.
- C. If codes and referenced standards are more stringent than requirements indicated, comply with requirements in codes and referenced standards.
- D. Fabricate openings and install sleeves in ceilings, floors, roof, and walls required by installation of products. Before proceeding with drilling, punching, and cutting, check for concealed work to avoid damage. Patch, flash, grout, seal, and refinish openings to match adjacent condition.
- E. Firestop penetrations made in fire-rated assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."
- F. Seal penetrations made in acoustically rated assemblies. Comply with requirements in Section 079200 "Joint Sealants."

G. Welding Requirements:

- 1. Restrict welding and burning to supports and bracing.
- 2. No equipment shall be cut or welded without approval. Welding or cutting will not be approved if there is risk of damage to adjacent Work.
- 3. Welding, where approved, shall be by inert-gas electric arc process and shall be performed by qualified welders according to applicable welding codes.
- 4. If requested on-site, show satisfactory evidence of welder certificates indicating ability to perform welding work intended.

H. Fastening Hardware:

- 1. Stillson wrenches, pliers, and other tools that damage surfaces of rods, nuts, and other parts are prohibited for work of assembling and tightening fasteners.
- 2. Tighten bolts and nuts firmly and uniformly. Do not overstress threads by excessive force or by oversized wrenches.
- 3. Lubricate threads of bolts, nuts and screws with graphite and oil before assembly.

I. If product locations are not indicated, install products in locations that are accessible and that will permit service and maintenance from floor, equipment platforms, or catwalks without removal of permanently installed furniture and equipment.

J. Corrosive Environments:

- 1. Avoid or limit use of materials in corrosive airstreams and environments, including, but not limited to, the following:
 - a. Laboratory exhaust-air streams.
 - b. Process exhaust-air streams.
- 2. When conduit is in contact with a corrosive airstream and environment, use Type 316 stainless-steel conduit and fittings or conduit and fittings that are coated with a corrosive-resistant coating that is suitable for environment. Comply with requirements for installation of raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- 3. Where instruments are located in a corrosive airstream and are not corrosive resistant from manufacturer, field install products in NEMA 250, Type 4X enclosure constructed of Type 316L stainless steel.

3.5 OPERATOR WORKSTATION INSTALLATION

- A. Desktop Operator Workstations Installation:
 - 1. Install operator workstation(s) at location(s) directed by Owner.
 - 2. Install multiple-receptacle power strip with cord for use in connecting multiple workstation components to a single duplex electrical power receptacle.
 - 3. Install software on workstation(s) and verify software functions properly.
 - 4. Develop Project-specific graphics, trends, reports, logs and historical database.

3.6 ROUTER INSTALLATION

- A. Install routers if required for DDC system communication interface requirements indicated.
 - 1. Install router(s) required to suit indicated requirements.
- B. Test router to verify that communication interface functions properly.

3.7 INSTALLATION OF WIRELESS ROUTERS FOR OPERATOR INTERFACE

- A. Install wireless routers to achieve optimum performance and best possible coverage.
- B. Mount wireless routers in a protected location that is within 60 inches of floor and easily accessible by operators.

- C. Connect wireless routers to field power supply and to UPS units if network controllers are powered through UPS units.
- D. Install wireless router with latest version of applicable software and configure wireless router with WPA2 security and password protection. Create access password with not less than 12 characters consisting of letters and numbers and at least one special character. Document password in operations and maintenance manuals for reference by operators.
- E. Test and adjust wireless routers for proper operation with portable workstation and other wireless devices intended for use by operators.

3.8 ENCLOSURES INSTALLATION

- A. Install the following items in enclosures, to comply with indicated requirements:
 - 1. Gateways.
 - 2. Routers.
 - 3. Controllers.
 - 4. Electrical power devices.
 - 5. UPS units.
 - 6. Relays.
 - 7. Accessories.
 - 8. Instruments.
 - 9. Actuators
- B. Attach wall-mounted enclosures to wall using the following types of steel struts:
 - 1. For NEMA 250, Type 1 Enclosures: Use painted steel strut and hardware.
 - 2. For NEMA 250, Type 4 Enclosures and Enclosures Located Outdoors: Use stainless-steel strut and hardware.
 - 3. Install plastic caps on exposed cut edges of strut.
- C. Align top of adjacent enclosures of like size.
- D. Install floor-mounted enclosures located in mechanical equipment rooms on concrete housekeeping pads. Attach enclosure legs using galvanized-steel anchors.
- E. Install continuous and fully accessible wireways to connect conduit, wire, and cable to multiple adjacent enclosures. Wireway used for application shall have protection equal to NEMA 250 rating of connected enclosures.

3.9 ELECTRIC POWER CONNECTIONS

- A. Connect electrical power to DDC system products requiring electrical power connections.
- B. Design of electrical power to products not indicated with electric power is delegated to DDC system provider and installing trade. Work shall comply with NFPA 70 and other requirements indicated.

- C. Comply with requirements in Section 262816 "Enclosed Switches and Circuit Breakers" for electrical power circuit breakers.
- D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for electrical power conductors and cables.
- E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for electrical power raceways and boxes.

3.10 IDENTIFICATION

- A. Identify system components, wiring, cabling, and terminals. Comply with requirements in Section 260553 "Identification for Electrical Systems" for identification products and installation.
- B. Install engraved phenolic nameplate with unique identification on face for each of the following:
 - 1. Operator workstation.
 - 2. Server.
 - 3. Printer.
 - 4. Gateway.
 - 5. Router.
 - 6. Protocol analyzer.
 - 7. DDC controller.
 - 8. Enclosure.
 - 9. Electrical power device.
 - 10. UPS unit.
 - 11. Accessory.
- C. Install engraved phenolic nameplate with unique instrument identification on face of each instrument connected to a DDC controller.
- D. Install engraved phenolic nameplate with identification on face of each control damper and valve actuator connected to a DDC controller.
- E. Where product is installed above accessible tile ceiling, also install matching engraved phenolic nameplate with identification on face of ceiling grid located directly below.
- F. Where product is installed above an inaccessible ceiling, also install engraved phenolic nameplate with identification on face of access door directly below.
- G. Warning Labels:
 - 1. Shall be permanently attached to equipment that can be automatically started by DDC control system.
 - 2. Shall be located in highly visible location near power service entry points.

3.11 CONTROL WIRE, CABLE AND RACEWAYS INSTALLATION

- A. Comply with NECA 1.
- B. Comply with TIA 568-C.1.
- C. Wiring Method: Install cables in raceways and cable trays. Conceal raceway and cables except in unfinished spaces.
 - 1. Install plenum cable in environmental air spaces, including plenum ceilings.
 - 2. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- D. Wiring Method: Conceal conductors and cables in accessible ceilings, walls, and floors where possible.
- E. Field Wiring within Enclosures: Bundle, lace, and train conductors to terminal points with no excess and without exceeding manufacturer's limitations on bending radii. Install lacing bars and distribution spools.

F. Conduit Installation:

- 1. Install conduit expansion joints where conduit runs exceed 200 feet, and conduit crosses building expansion joints.
- 2. Coordinate conduit routing with other trades to avoid conflicts with ducts, pipes and equipment and service clearance.
- 3. Maintain at least 3-inch separation where conduits run axially above or below ducts and pipes.
- 4. Limit above-grade conduit runs to 100 feet without pull or junction box.
- 5. Do not install raceways or electrical items on any "explosion-relief" walls, or rotating equipment.
- 6. Do not fasten conduits onto the bottom side of a metal deck roof.
- 7. Flexible conduit is permitted only where flexibility and vibration control is required.
- 8. Limit flexible conduit to 3 feet long.
- 9. Conduit shall be continuous from outlet to outlet, from outlet to enclosures, pull and junction boxes, and shall be secured to boxes in such manner that each system shall be electrically continuous throughout.
- 10. Direct bury conduits underground or install in concrete-encased duct bank where indicated.
 - a. Use rigid, nonmetallic, Schedule 80 PVC.
 - b. Provide a burial depth according to NFPA 70, but not less than 24 inches.
- 11. Secure threaded conduit entering an instrument enclosure, cabinet, box, and trough, with a locknut on outside and inside, such that conduit system is electrically continuous throughout. Provide a metal bushing on inside with insulated throats. Locknuts shall be the type designed to bite into the metal or, on inside of enclosure, shall have a grounding wedge lug under locknut.
- 12. Conduit box-type connectors for conduit entering enclosures shall have an insulated throat.

- 13. Connect conduit entering enclosures in wet locations with box-type connectors or with watertight sealing locknuts or other fittings.
- 14. Offset conduits where entering surface-mounted equipment.
- 15. Seal conduit runs used by sealing fittings to prevent the circulation of air for the following:
 - a. Conduit extending from interior to exterior of building.
 - b. Conduit extending into pressurized duct and equipment.
 - c. Conduit extending into pressurized zones that are automatically controlled to maintain different pressure set points.

G. Wire and Cable Installation:

- 1. Cables serving a common system may be grouped in a common raceway. Install control wiring and cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.
- 2. Install cables with protective sheathing that is waterproof and capable of withstanding continuous temperatures of 90 deg C with no measurable effect on physical and electrical properties of cable.
 - a. Provide shielding to prevent interference and distortion from adjacent cables and equipment.
- 3. Install lacing bars to restrain cables, to prevent straining connections, and to prevent bending cables to smaller radii than minimums recommended by manufacturer.
- 4. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, "Cabling Termination Practices" Chapter. Install lacing bars and distribution spools.
- 5. UTP Cable Installation:
 - a. Comply with TIA 568-C.2.
 - b. Do not untwist UTP cables more than 1/2 inch from the point of termination, to maintain cable geometry.
- 6. Installation of Cable Routed Exposed under Raised Floors:
 - a. Install plenum-rated cable only.
 - b. Install cabling after the flooring system has been installed in raised floor areas.
 - c. Coil cable 6 feet long not less than 12 inches in diameter below each feed point.
- 7. Identify each wire on each end and at each terminal with a number-coded identification tag. Each wire shall have a unique tag.
- 8. Provide strain relief.
- 9. Terminate wiring in a junction box.
 - a. Clamp cable over jacket in junction box.
 - b. Individual conductors in the stripped section of the cable shall be slack between the clamping point and terminal block.

- 10. Terminate field wiring and cable not directly connected to instruments and control devices having integral wiring terminals using terminal blocks.
- 11. Install signal transmission components according to IEEE C2, REA Form 511a, NFPA 70, and as indicated.
- 12. Keep runs short. Allow extra length for connecting to terminal boards. Do not bend flexible coaxial cables in a radius less than 10 times the cable OD. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
- 13. Ground wire shall be copper and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.
- 14. Wire and cable shall be continuous from terminal to terminal without splices.
- 15. Use insulated spade lugs for wire and cable connection to screw terminals.
- 16. Use shielded cable to transmitters.
- 17. Use shielded cable to temperature sensors.
- 18. Perform continuity and meager testing on wire and cable after installation.
- 19. Do not install bruised, kinked, scored, deformed, or abraded wire and cable. Remove and discard wire and cable if damaged during installation, and replace it with new cable.
- 20. Cold-Weather Installation: Bring cable to room temperature before dereeling. Heat lamps shall not be used for heating.
- 21. Pulling Cable: Comply with BICSI ITSIM, Ch. 4, "Pulling Cable." Monitor cable pull tensions.
- 22. Protection from Electro-Magnetic Interference (EMI): Provide installation free of (EMI). As a minimum, comply with the following requirements:
 - a. Comply with BICSI TDMM and TIA 569-C for separating unshielded cable from potential EMI sources, including electrical power lines and equipment.
 - b. Separation between open cables or cables in nonmetallic raceways and unshielded power conductors and electrical equipment shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 5 inches.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 12 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 24 inches.
 - c. Separation between cables in grounded metallic raceways and unshielded power lines or electrical equipment shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: A minimum of 2-1/2 inches.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 6 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 12 inches.
 - d. Separation between cables in grounded metallic raceways and power lines and electrical equipment located in grounded metallic conduits or enclosures shall be as follows:
 - 1) Electrical Equipment Rating Less Than 2 kVA: No requirement.
 - 2) Electrical Equipment Rating between 2 and 5 kVA: A minimum of 3 inches.
 - 3) Electrical Equipment Rating More Than 5 kVA: A minimum of 6 inches.

- e. Separation between Cables and Electrical Motors and Transformers, 5 kVA or 5 HP and Larger: A minimum of 48 inches.
- f. Separation between Cables and Fluorescent Fixtures: A minimum of 5 inches.

3.12 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.

D. Testing:

- 1. Perform preinstallation, in-progress, and final tests, supplemented by additional tests, as necessary.
- 2. Preinstallation Cable Verification: Verify integrity and serviceability for new cable lengths before installation. This assurance may be provided by using vendor verification documents, testing, or other methods. As a minimum, furnish evidence of verification for cable attenuation and bandwidth parameters.
- 3. In-Progress Testing: Perform standard tests for correct pair identification and termination during installation to ensure proper installation and cable placement. Perform tests in addition to those specified if there is any reason to question condition of material furnished and installed. Testing accomplished is to be documented by agency conducting tests. Submit test results for Project record.
- 4. Final Testing: Perform final test of installed system to demonstrate acceptability as installed. Testing shall be performed according to a test plan supplied by DDC system manufacturer. Defective Work or material shall be corrected and retested. As a minimum, final testing for cable system, including spare cable, shall verify conformance of attenuation, length, and bandwidth parameters with performance indicated.
- 5. Test Equipment: Use a fiber-optic time domain reflectometer for testing of length and optical connectivity.
- 6. Test Results: Record test results and submit copy of test results for Project record.

3.13 DDC SYSTEM I/O CHECKOUT PROCEDURES

- A. Check installed products before continuity tests, leak tests and calibration.
- B. Check instruments for proper location and accessibility.

C. Check instruments for proper installation on direction of flow, elevation, orientation, insertion depth, or other applicable considerations that will impact performance.

D. Control Damper Checkout:

- 1. Verify that control dampers are installed correctly for flow direction.
- 2. Verify that proper blade alignment, either parallel or opposed, has been provided.
- 3. Verify that damper frame attachment is properly secured and sealed.
- 4. Verify that damper actuator and linkage attachment is secure.
- 5. Verify that actuator wiring is complete, enclosed and connected to correct power source.
- 6. Verify that damper blade travel is unobstructed.

E. Control Valve Checkout:

- 1. Verify that control valves are installed correctly for flow direction.
- 2. Verify that valve body attachment is properly secured and sealed.
- 3. Verify that valve actuator and linkage attachment is secure.
- 4. Verify that actuator wiring is complete, enclosed and connected to correct power source.
- 5. Verify that valve ball, disc or plug travel is unobstructed.
- 6. After piping systems have been tested and put into service, but before insulating and balancing, inspect each valve for leaks. Adjust or replace packing to stop leaks. Replace the valve if leaks persist.

F. Instrument Checkout:

- 1. Verify that instrument is correctly installed for location, orientation, direction and operating clearances.
- 2. Verify that attachment is properly secured and sealed.
- 3. Verify that conduit connections are properly secured and sealed.
- 4. Verify that wiring is properly labeled with unique identification, correct type and size and is securely attached to proper terminals.
- 5. Inspect instrument tag against approved submittal.
- 6. For flow instruments, verify that recommended upstream and downstream distances have been maintained.
- 7. For temperature instruments:
 - a. Verify sensing element type and proper material.
 - b. Verify length and insertion.

3.14 DDC SYSTEM I/O ADJUSTMENT, CALIBRATION AND TESTING:

- A. Calibrate each instrument installed that is not factory calibrated and provided with calibration documentation.
- B. Provide a written description of proposed field procedures and equipment for calibrating each type of instrument. Submit procedures before calibration and adjustment.
- C. For each analog instrument, make a three-point test of calibration for both linearity and accuracy.

- D. Equipment and procedures used for calibration shall comply with instrument manufacturer's written instructions.
- E. Provide diagnostic and test equipment for calibration and adjustment.
- F. Field instruments and equipment used to test and calibrate installed instruments shall have accuracy at least twice the instrument accuracy being calibrated. An installed instrument with an accuracy of 1 percent shall be checked by an instrument with an accuracy of 0.5 percent.
- G. Calibrate each instrument according to instrument instruction manual supplied by manufacturer.
- H. If after calibration indicated performance cannot be achieved, replace out-of-tolerance instruments.
- I. Comply with field testing requirements and procedures indicated by ASHRAE's Guideline 11, "Field Testing of HVAC Control Components," in the absence of specific requirements, and to supplement requirements indicated.

J. Analog Signals:

- 1. Check analog voltage signals using a precision voltage meter at zero, 50, and 100 percent.
- 2. Check analog current signals using a precision current meter at zero, 50, and 100 percent.
- 3. Check resistance signals for temperature sensors at zero, 50, and 100 percent of operating span using a precision-resistant source.

K. Digital Signals:

- 1. Check digital signals using a jumper wire.
- 2. Check digital signals using an ohmmeter to test for contact making or breaking.

L. Control Dampers:

- 1. Stroke and adjust control dampers following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
- 2. Stroke control dampers with pilot positioners. Adjust damper and positioner following manufacturer's recommended procedure, so damper is 100 percent closed, 50 percent closed and 100 percent open at proper air pressure.
- 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
- 4. For control dampers equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.

M. Control Valves:

- 1. Stroke and adjust control valves following manufacturer's recommended procedure, from 100 percent open to 100 percent closed and back to 100 percent open.
- 2. Stroke control valves with pilot positioners. Adjust valve and positioner following manufacturer's recommended procedure, so valve is 100 percent closed, 50 percent closed and 100 percent open at proper air pressures.

- 3. Check and document open and close cycle times for applications with a cycle time less than 30 seconds.
- 4. For control valves equipped with positive position indication, check feedback signal at multiple positions to confirm proper position indication.
- N. Meters: Check sensors at zero, 50, and 100 percent of Project design values.
- O. Sensors: Check sensors at zero, 50, and 100 percent of Project design values.
- P. Switches: Calibrate switches to make or break contact at set points indicated.

O. Transmitters:

- 1. Check and calibrate transmitters at zero, 50, and 100 percent of Project design values.
- 2. Calibrate resistance temperature transmitters at zero, 50, and 100 percent of span using a precision-resistant source.

3.15 DDC SYSTEM CONTROLLER CHECKOUT

- A. Verify power supply.
 - 1. Verify voltage, phase and hertz.
 - 2. Verify that protection from power surges is installed and functioning.
 - 3. Verify that ground fault protection is installed.
 - 4. If applicable, verify if connected to UPS unit.
 - 5. If applicable, verify if connected to a backup power source.
 - 6. If applicable, verify that power conditioning units, transient voltage suppression and high-frequency noise filter units are installed.
- B. Verify that wire and cabling is properly secured to terminals and labeled with unique identification.
- C. Verify that spare I/O capacity is provided.

3.16 DDC CONTROLLER I/O CONTROL LOOP TESTS

A. Testing:

- 1. Test every I/O point connected to DDC controller to verify that safety and operating control set points are as indicated and as required to operate controlled system safely and at optimum performance.
- 2. Test every I/O point throughout its full operating range.
- 3. Test every control loop to verify operation is stable and accurate.
- 4. Adjust control loop proportional, integral and derivative settings to achieve optimum performance while complying with performance requirements indicated. Document testing of each control loop's precision and stability via trend logs.
- 5. Test and adjust every control loop for proper operation according to sequence of operation.

- 6. Test software and hardware interlocks for proper operation. Correct deficiencies.
- 7. Operate each analog point at the following:
 - a. Upper quarter of range.
 - b. Lower quarter of range.
 - c. At midpoint of range.
- 8. Exercise each binary point.
- 9. For every I/O point in DDC system, read and record each value at operator workstation, at DDC controller and at field instrument simultaneously. Value displayed at operator workstation, at DDC controller and at field instrument shall match.
- 10. Prepare and submit a report documenting results for each I/O point in DDC system and include in each I/O point a description of corrective measures and adjustments made to achieve desire results.

3.17 DDC SYSTEM VALIDATION TESTS

- A. Perform validation tests before requesting final review of system. Before beginning testing, first submit Pretest Checklist and Test Plan.
- B. After approval of Test Plan, execute all tests and procedures indicated in plan.
- C. After testing is complete, submit completed test checklist.
- D. Pretest Checklist: Submit the following list with items checked off once verified:
 - 1. Detailed explanation for any items that are not completed or verified.
 - 2. Required mechanical installation work is successfully completed and HVAC equipment is working correctly.
 - 3. HVAC equipment motors operate below full-load amperage ratings.
 - 4. Required DDC system components, wiring, and accessories are installed.
 - 5. Installed DDC system architecture matches approved Drawings.
 - 6. Control electric power circuits operate at proper voltage and are free from faults.
 - 7. Required surge protection is installed.
 - 8. DDC system network communications function properly, including uploading and downloading programming changes.
 - 9. Using BACnet protocol analyzer, verify that communications are error free.
 - 10. Each controller's programming is backed up.
 - 11. Equipment, products, tubing, wiring cable and conduits are properly labeled.
 - 12. All I/O points are programmed into controllers.
 - 13. Testing, adjusting and balancing work affecting controls is complete.
 - 14. Dampers and actuators zero and span adjustments are set properly.
 - 15. Each control damper and actuator goes to failed position on loss of power.
 - 16. Valves and actuators zero and span adjustments are set properly.
 - 17. Each control valve and actuator goes to failed position on loss of power.
 - 18. Meter, sensor and transmitter readings are accurate and calibrated.
 - 19. Control loops are tuned for smooth and stable operation.
 - 20. View trend data where applicable.
 - 21. Each controller works properly in standalone mode.

- 22. Safety controls and devices function properly.
- 23. Interfaces with fire-alarm system function properly.
- 24. Electrical interlocks function properly.
- 25. Operator workstations and other interfaces are delivered, all system and database software is installed, and graphic are created.
- 26. Record Drawings are completed.

E. Test Plan:

- 1. Prepare and submit a validation test plan including test procedures for performance validation tests.
- 2. Test plan shall address all specified functions of DDC system and sequences of operation.
- 3. Explain detailed actions and expected results to demonstrate compliance with requirements indicated.
- 4. Explain method for simulating necessary conditions of operation used to demonstrate performance.
- 5. Include a test checklist to be used to check and initial that each test has been successfully completed.
- 6. Submit test plan documentation 10 business days before start of tests.

F. Validation Test:

- 1. Verify operating performance of each I/O point in DDC system.
 - a. Verify analog I/O points at operating value.
 - b. Make adjustments to out-of-tolerance I/O points.
 - 1) Identify I/O points for future reference.
 - 2) Simulate abnormal conditions to demonstrate proper function of safety devices.
 - 3) Replace instruments and controllers that cannot maintain performance indicated after adjustments.
- 2. Simulate conditions to demonstrate proper sequence of control.
- 3. Readjust settings to design values and observe ability of DDC system to establish desired conditions.
- 4. After 24 Hours following Initial Validation Test:
 - a. Re-check I/O points that required corrections during initial test.
 - b. Identify I/O points that still require additional correction and make corrections necessary to achieve desired results.
- 5. After 24 Hours of Second Validation Test:
 - a. Re-check I/O points that required corrections during second test.
 - b. Continue validation testing until I/O point is normal on two consecutive tests.
- 6. Completely check out, calibrate, and test all connected hardware and software to ensure that DDC system performs according to requirements indicated.

7. After validation testing is complete, prepare and submit a report indicating all I/O points that required correction and how many validation re-tests it took to pass. Identify adjustments made for each test and indicate instruments that were replaced.

3.18 DDC SYSTEM WIRELESS NETWORK VERIFICATION

- A. DDC system Installer shall design wireless DDC system networks to comply with performance requirements indicated.
- B. Installer shall verify wireless network performance through field testing and shall document results in a field test report.
- C. Testing and verification of all wireless devices shall include, but not be limited to, the following:
 - 1. Speed.
 - 2. Online status.
 - 3. Signal strength.

3.19 DEMONSTRATION

A. Engage a factory-authorized service representative with complete knowledge of Project-specific system installed to train Owner's maintenance personnel to adjust, operate, and maintain DDC system.

B. Extent of Training:

- 1. Base extent of training on scope and complexity of DDC system indicated and training requirements indicated. Provide extent of training required to satisfy requirements indicated even if more than minimum training requirements are indicated.
- 2. Inform Owner of anticipated training requirements if more than minimum training requirements are indicated.
- 3. Minimum Training Requirements:
 - a. Provide not less than 8 hours of training total.

END OF SECTION 230923

SECTION 231123 - FACILITY NATURAL-GAS PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipes, tubes, and fittings.
- 2. Piping specialties.
- 3. Piping and tubing joining materials.
- 4. Valves.
- 5. Pressure regulators.

1.3 DEFINITIONS

- A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels.
- B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms.
- C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations.

1.4 PERFORMANCE REQUIREMENTS

- A. Minimum Operating-Pressure Ratings:
 - 1. Piping and Valves: 100 psig minimum unless otherwise indicated.
 - 2. Service Regulators: 100 psig minimum unless otherwise indicated.
 - 3. Minimum Operating Pressure of Service Meter: 5 psig.
- B. Natural-Gas System Pressure within Buildings: 0.5 psig or less.

1.5 ACTION SUBMITTALS

A. Product Data: For each type of the following:

- 1. Piping specialties.
- 2. Valves. Include pressure rating, capacity, settings, and electrical connection data of selected models.
- 3. Pressure regulators. Indicate pressure ratings and capacities.
- 4. Dielectric fittings.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans and details, drawn to scale, on which natural-gas piping is shown and coordinated with other installations, using input from installers of the items involved.
- B. Site Survey: Plans, drawn to scale, on which natural-gas piping is shown and coordinated with other services and utilities.
- C. Qualification Data: For qualified professional engineer.
- D. Welding certificates.
- E. Field quality-control reports.

1.7 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For pressure regulators to include in emergency, operation, and maintenance manuals.

1.8 QUALITY ASSURANCE

- A. Steel Support Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel."
- B. Pipe Welding Qualifications: Qualify procedures and operators according to ASME Boiler and Pressure Vessel Code.
- C. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

1.9 DELIVERY, STORAGE, AND HANDLING

- A. Handling Flammable Liquids: Remove and dispose of liquids from existing natural-gas piping according to requirements of authorities having jurisdiction.
- B. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture.
- C. Store and handle pipes and tubes having factory-applied protective coatings to avoid damaging coating, and protect from direct sunlight.

D. Protect stored PE pipes and valves from direct sunlight.

1.10 PROJECT CONDITIONS

A. Perform site survey, research public utility records, and verify existing utility locations. Contact utility-locating service for area where Project is located.

1.11 COORDINATION

- A. Coordinate sizes and locations of concrete bases with actual equipment provided.
- B. Coordinate requirements for access panels and doors for valves installed concealed behind finished surfaces. Comply with requirements in Section 083113 "Access Doors and Frames."

PART 2 - PRODUCTS

2.1 PIPES, TUBES, AND FITTINGS

- A. Steel Pipe: ASTM A 53/A 53M, black steel, Schedule 40, Type E or S, Grade B.
 - 1. Malleable-Iron Threaded Fittings: ASME B16.3, Class 150, standard pattern.
 - 2. Wrought-Steel Welding Fittings: ASTM A 234/A 234M for butt welding and socket welding.
 - 3. Unions: ASME B16.39, Class 150, malleable iron with brass-to-iron seat, ground joint, and threaded ends.
 - 4. Forged-Steel Flanges and Flanged Fittings: ASME B16.5, minimum Class 150, including bolts, nuts, and gaskets of the following material group, end connections, and facings:
 - a. Material Group: 1.1.
 - b. End Connections: Threaded or butt welding to match pipe.
 - c. Lapped Face: Not permitted underground.
 - d. Gasket Materials: ASME B16.20, metallic, flat, asbestos free, aluminum o-rings, and spiral-wound metal gaskets.
 - e. Bolts and Nuts: ASME B18.2.1, carbon steel aboveground and stainless steel underground.

2.2 PIPING SPECIALTIES

A. Y-Pattern Strainers:

- 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection.
- 2. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area.
- 4. CWP Rating: 125 psig.

2.3 JOINING MATERIALS

- A. Joint Compound and Tape: Suitable for natural gas.
- B. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded.

2.4 MANUAL GAS SHUTOFF VALVES

- A. See "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles for where each valve type is applied in various services.
- B. General Requirements for Metallic Valves, NPS 2 and Smaller: Comply with ASME B16.33.
 - 1. CWP Rating: 125 psig.
 - 2. Threaded Ends: Comply with ASME B1.20.1.
 - 3. Dryseal Threads on Flare Ends: Comply with ASME B1.20.3.
 - 4. Tamperproof Feature: Locking feature for valves indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 5. Listing: Listed and labeled by an NRTL acceptable to authorities having jurisdiction for valves 1 inch and smaller.
 - 6. Service Mark: Valves 1-1/4 inches to NPS 2 shall have initials "WOG" permanently marked on valve body.
- C. Two-Piece, Full-Port, Bronze Ball Valves with Bronze Trim: MSS SP-110.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Apollo Valves; Conbraco Industries, Inc.
 - b. BrassCraft Manufacturing Co.; a Masco company.
 - c. Perfection Corporation.
 - 2. Body: Bronze, complying with ASTM B 584.
 - 3. Ball: Chrome-plated bronze.
 - 4. Stem: Bronze; blowout proof.
 - 5. Seats: Reinforced TFE; blowout proof.
 - 6. Packing: Threaded-body packnut design with adjustable-stem packing.
 - 7. Ends: Threaded, flared, or socket as indicated in "Underground Manual Gas Shutoff Valve Schedule" and "Aboveground Manual Gas Shutoff Valve Schedule" Articles.
 - 8. CWP Rating: 600 psig.
 - 9. Listing: Valves NPS 1 and smaller shall be listed and labeled by an NRTL acceptable to authorities having jurisdiction.
 - 10. Service: Suitable for natural-gas service with "WOG" indicated on valve body.

2.5 PRESSURE REGULATORS

A. General Requirements:

- 1. Single stage and suitable for natural gas.
- 2. Steel jacket and corrosion-resistant components.
- 3. Elevation compensator.
- 4. End Connections: Threaded for regulators NPS 2 and smaller; flanged for regulators NPS 2-1/2 and larger.

B. Service Pressure Regulators: Comply with ANSI Z21.80.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Actaris.
 - b. American Meter Company.
 - c. Fisher Control Valves & Instruments; a brand of Emerson Process Management.
- 2. Body and Diaphragm Case: Cast iron or die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber resistant to gas impurities, abrasion, and deformation at the valve port.
- 6. Orifice: Aluminum; interchangeable.
- 7. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 8. Single-port, self-contained regulator with orifice no larger than required at maximum pressure inlet, and no pressure sensing piping external to the regulator.
- 9. Pressure regulator shall maintain discharge pressure setting downstream, and not exceed 150 percent of design discharge pressure at shutoff.
- 10. Overpressure Protection Device: Factory mounted on pressure regulator.
- 11. Atmospheric Vent: Factory- or field-installed, stainless-steel screen in opening if not connected to vent piping.
- 12. Maximum Inlet Pressure: 100 psig.

C. Appliance Pressure Regulators: Comply with ANSI Z21.18.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Canadian Meter Company Inc.
 - b. Eaton.
 - c. Harper Wyman Co.
- 2. Body and Diaphragm Case: Die-cast aluminum.
- 3. Springs: Zinc-plated steel; interchangeable.
- 4. Diaphragm Plate: Zinc-plated steel.
- 5. Seat Disc: Nitrile rubber.

- 6. Seal Plug: Ultraviolet-stabilized, mineral-filled nylon.
- 7. Factory-Applied Finish: Minimum three-layer polyester and polyurethane paint finish.
- 8. Regulator may include vent limiting device, instead of vent connection, if approved by authorities having jurisdiction.
- 9. Maximum Inlet Pressure: 2 psig.

2.6 DIELECTRIC FITTINGS

A. General Requirements: Assembly of copper alloy and ferrous materials with separating nonconductive insulating material. Include end connections compatible with pipes to be joined.

B. Dielectric Unions:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. A.Y. McDonald Mfg. Co.
 - b. Capitol Manufacturing Company.
 - c. Central Plastics Company.

2. Description:

- a. Standard: ASSE 1079.
- b. Pressure Rating: 125 psig minimum at 180 deg F.
- c. End Connections: Solder-joint copper alloy and threaded ferrous.

2.7 LABELING AND IDENTIFYING

A. Detectable Warning Tape: Acid- and alkali-resistant, PE film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored yellow.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine roughing-in for natural-gas piping system to verify actual locations of piping connections before equipment installation.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 PREPARATION

- A. Close equipment shutoff valves before turning off natural gas to premises or piping section.
- B. Inspect natural-gas piping according to the Virginia Fuel Gas Code to determine that natural-gas utilization devices are turned off in piping section affected.
- C. Comply with the Virginia Fuel Gas Code requirements for prevention of accidental ignition.

3.3 OUTDOOR PIPING INSTALLATION

- A. Comply with the Virginia Fuel Gas Code for installation and purging of natural-gas piping.
- B. Steel Piping with Protective Coating:
 - 1. Apply joint cover kits to pipe after joining to cover, seal, and protect joints.
 - 2. Repair damage to PE coating on pipe as recommended in writing by protective coating manufacturer.
 - 3. Replace pipe having damaged PE coating with new pipe.

3.4 INDOOR PIPING INSTALLATION

- A. Comply with the Virginia Fuel Gas Code for installation and purging of natural-gas piping.
- B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicated locations and arrangements are used to size pipe and calculate friction loss, expansion, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings.
- C. Arrange for pipe spaces, chases, slots, sleeves, and openings in building structure during progress of construction, to allow for mechanical installations.
- D. Install piping in concealed locations unless otherwise indicated and except in equipment rooms and service areas.
- E. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- F. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal.
- G. Locate valves for easy access.
- H. Install natural-gas piping at uniform grade of 2 percent down toward drip and sediment traps.
- I. Install piping free of sags and bends.
- J. Install fittings for changes in direction and branch connections.

- K. Verify final equipment locations for roughing-in.
- L. Comply with requirements in Sections specifying gas-fired appliances and equipment for roughing-in requirements.
- M. Drips and Sediment Traps: Install drips at points where condensate may collect, including service-meter outlets. Locate where accessible to permit cleaning and emptying. Do not install where condensate is subject to freezing.
 - 1. Construct drips and sediment traps using tee fitting with bottom outlet plugged or capped. Use nipple a minimum length of 3 pipe diameters, but not less than 3 inches long and same size as connected pipe. Install with space below bottom of drip to remove plug or cap.
- N. Extend relief vent connections for service regulators, line regulators, and overpressure protection devices to outdoors and terminate with weatherproof vent cap.
- O. Conceal pipe installations in walls, pipe spaces, utility spaces, above ceilings, below grade or floors, and in floor channels unless indicated to be exposed to view.
- P. Concealed Location Installations: Except as specified below, install concealed natural-gas piping and piping installed under the building in containment conduit constructed of steel pipe with welded joints as described in Part 2. Install a vent pipe from containment conduit to outdoors and terminate with weatherproof vent cap.
 - 1. Above Accessible Ceilings: Natural-gas piping, fittings, valves, and regulators may be installed in accessible spaces without containment conduit.
 - 2. In Walls or Partitions: Protect tubing installed inside partitions or hollow walls from physical damage using steel striker barriers at rigid supports.
 - a. Exception: Tubing passing through partitions or walls does not require striker barriers.

3. Prohibited Locations:

- a. Do not install natural-gas piping in or through circulating air ducts, clothes or trash chutes, chimneys or gas vents (flues), ventilating ducts, or dumbwaiter or elevator shafts.
- b. Do not install natural-gas piping in solid walls or partitions.
- Q. Use eccentric reducer fittings to make reductions in pipe sizes. Install fittings with level side down.
- R. Connect branch piping from top or side of horizontal piping.
- S. Install unions in pipes NPS 2 and smaller, adjacent to each valve, at final connection to each piece of equipment. Unions are not required at flanged connections.
- T. Do not use natural-gas piping as grounding electrode.

- U. Install strainer on inlet of each line-pressure regulator.
- V. Install sleeves for piping penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- W. Install sleeve seals for piping penetrations of concrete walls and slabs. Comply with requirements for sleeve seals specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- X. Install escutcheons for piping penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.5 VALVE INSTALLATION

- A. Install manual gas shutoff valve for each gas appliance ahead of corrugated stainless-steel tubing, aluminum, or copper connector.
- B. Install regulators and overpressure protection devices with maintenance access space adequate for servicing and testing.

3.6 PIPING JOINT CONSTRUCTION

- A. Ream ends of pipes and tubes and remove burrs.
- B. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly.

C. Threaded Joints:

- 1. Thread pipe with tapered pipe threads complying with ASME B1.20.1.
- 2. Cut threads full and clean using sharp dies.
- 3. Ream threaded pipe ends to remove burrs and restore full inside diameter of pipe.
- 4. Apply appropriate tape or thread compound to external pipe threads unless dryseal threading is specified.
- 5. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds.

D. Welded Joints:

- 1. Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators.
- 2. Bevel plain ends of steel pipe.
- 3. Patch factory-applied protective coating as recommended by manufacturer at field welds and where damage to coating occurs during construction.

3.7 HANGER AND SUPPORT INSTALLATION

- A. Comply with requirements for pipe hangers and supports specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."
- B. Install hangers for horizontal steel piping with the following maximum spacing and minimum rod sizes:
 - 1. NPS 1 and Smaller: Maximum span, 96 inches; minimum rod size, 3/8 inch.
 - 2. NPS 1-1/4: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 3. NPS 1-1/2 and NPS 2: Maximum span, 108 inches; minimum rod size, 3/8 inch.
 - 4. NPS 2-1/2 to NPS 3-1/2: Maximum span, 10 feet; minimum rod size, 1/2 inch.
 - 5. NPS 4 and Larger: Maximum span, 10 feet; minimum rod size, 5/8 inch.

3.8 CONNECTIONS

- A. Connect to utility's gas main according to utility's procedures and requirements.
- B. Install natural-gas piping electrically continuous, and bonded to gas appliance equipment grounding conductor of the circuit powering the appliance according to NFPA 70.
- C. Install piping adjacent to appliances to allow service and maintenance of appliances.
- D. Connect piping to appliances using manual gas shutoff valves and unions. Install valve within 72 inches of each gas-fired appliance and equipment. Install union between valve and appliances or equipment.
- E. Sediment Traps: Install tee fitting with capped nipple in bottom to form drip, as close as practical to inlet of each appliance.

3.9 LABELING AND IDENTIFYING

- A. Comply with requirements in Section 230553 "Identification for HVAC Piping and Equipment" for piping and valve identification.
- B. Install detectable warning tape directly above gas piping, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.10 PAINTING

- A. Paint exposed, exterior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI EXT 5.1D.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Exterior alkyd enamel matching topcoat.

- c. Topcoat: Exterior alkyd enamel (semigloss).
- d. Color: Gray.
- B. Paint exposed, interior metal piping, valves, service regulators, service meters and meter bars, earthquake valves, and piping specialties, except components, with factory-applied paint or protective coating.
 - 1. Alkyd System: MPI INT 5.1E.
 - a. Prime Coat: Alkyd anticorrosive metal primer.
 - b. Intermediate Coat: Interior alkyd matching topcoat.
 - c. Topcoat: Interior alkyd (semigloss)
 - d. Color: Yellow.
- C. Damage and Touchup: Repair marred and damaged factory-applied finishes with materials and by procedures to match original factory finish.

3.11 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. Test, inspect, and purge natural gas according to The Virginia Fuel Gas Code and authorities having jurisdiction.
- C. Natural-gas piping will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.

3.12 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain earthquake valves.

3.13 OUTDOOR PIPING SCHEDULE

- A. Aboveground natural-gas piping shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.

3.14 INDOOR PIPING SCHEDULE FOR SYSTEM PRESSURES LESS THAN 0.5 PSIG

- A. Aboveground, branch piping NPS 1 and smaller shall be the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.

- B. Aboveground, distribution piping shall be one of the following:
 - 1. Steel pipe with malleable-iron fittings and threaded joints.
 - 2. Steel pipe with wrought-steel fittings and welded joints.

3.15 ABOVEGROUND MANUAL GAS SHUTOFF VALVE SCHEDULE

- A. Valves for pipe sizes NPS 2 and smaller at service meter shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
- B. Distribution piping valves for pipe sizes NPS 2 and smaller shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.
- C. Valves in branch piping for single appliance shall be the following:
 - 1. Two-piece, full-port, bronze ball valves with bronze trim.

END OF SECTION 231123

SECTION 233113 - METAL DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Single-wall rectangular ducts and fittings.
- 2. Single-wall round ducts and fittings.
- 3. Double-wall round ducts and fittings.
- 4. Sheet metal materials.
- 5. Sealants and gaskets.
- 6. Hangers and supports.

B. Related Sections:

- 1. Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing requirements for metal ducts.
- 2. Section 233300 "Air Duct Accessories" for dampers, sound-control devices, duct-mounting access doors and panels, turning vanes, and flexible ducts.

1.3 PERFORMANCE REQUIREMENTS

A. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of the following products:
 - 1. Liners and adhesives.
 - 2. Sealants and gaskets.

1.5 INFORMATIONAL SUBMITTALS

A. Coordination Drawings: Plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:

- 1. Duct installation in congested spaces, indicating coordination with general construction, building components, and other building services. Indicate proposed changes to duct layout.
- 2. Suspended ceiling components.
- 3. Structural members to which duct will be attached.
- 4. Size and location of initial access modules for acoustical tile.
- 5. Penetrations of smoke barriers and fire-rated construction.
- 6. Items penetrating finished ceiling including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Access panels.
 - f. Perimeter moldings.
- B. Welding certificates.
- C. Field quality-control reports.

1.6 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports.
 - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and System Start-up."
- C. ASHRAE/IES Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6.4.4 "HVAC System Construction and Insulation."

PART 2 - PRODUCTS

2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated.
- B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-1, "Rectangular Duct/Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

- C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 2-2, "Rectangular Duct/Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 4, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."

2.2 SINGLE-WALL ROUND DUCTS AND FITTINGS

- A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Ductmate Industries, Inc.
 - b. McGill AirFlow LLC.
 - c. SEMCO LLC.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension).
- C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
- D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."
 - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.

E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible."

2.3 DOUBLE-WALL ROUND DUCTS AND FITTINGS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Linx Industries (formerly Lindab).
 - 2. McGill AirFlow LLC.
 - 3. SEMCO LLC.
- B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter of the round sides connecting the flat portions of the duct (minor dimension) of the inner duct.
- C. Outer Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on static-pressure class unless otherwise indicated.
 - 1. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Round Duct Transverse Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged.
 - Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Round Duct Longitudinal Seams," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - a. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams.
 - b. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams.
 - 3. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- D. Inner Duct: Minimum 0.028-inch solid sheet steel.

- E. Interstitial Insulation: Fibrous-glass liner complying with ASTM C 1071, NFPA 90A, or NFPA 90B; and with NAIMA AH124, "Fibrous Glass Duct Liner Standard."
 - 1. Maximum Thermal Conductivity: 0.27 Btu x in./h x sq. ft. x deg F at 75 deg F mean temperature.
 - 2. Install spacers that position the inner duct at uniform distance from outer duct without compressing insulation.
 - 3. Coat insulation with antimicrobial coating.
 - 4. Cover insulation with polyester film complying with UL 181, Class 1.
- F. Interstitial Insulation: Flexible elastomeric duct liner complying with ASTM C 534, Type II for sheet materials, and with NFPA 90A or NFPA 90B.
 - 1. Maximum Thermal Conductivity: 0.25 Btu x in./h x sq. ft. x deg F at75 deg F mean temperature.

2.4 SHEET METAL MATERIALS

- A. General Material Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Finishes for Surfaces Exposed to View: Mill phosphatized.
- C. Aluminum Sheets: Comply with ASTM B 209 Alloy 3003, H14 temper; with mill finish for concealed ducts, and standard, one-side bright finish for duct surfaces exposed to view.
- D. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized.
 - 1. Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials.
- E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.5 SEALANT AND GASKETS

- A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL.
- B. Water-Based Joint and Seam Sealant:

- 1. Application Method: Brush on.
- 2. Solids Content: Minimum 65 percent.
- 3. Shore A Hardness: Minimum 20.
- 4. Water resistant.
- 5. Mold and mildew resistant.
- 6. VOC: Maximum 75 g/L (less water).
- 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative.
- 8. Service: Indoor or outdoor.
- 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets.
- C. Flanged Joint Sealant: Comply with ASTM C 920.
 - 1. General: Single-component, acid-curing, silicone, elastomeric.
 - 2. Type: S.
 - 3. Grade: NS.
 - 4. Class: 25.
 - 5. Use: O.
- D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer.
- E. Round Duct Joint O-Ring Seals:
 - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative.
 - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot.
 - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots.

2.6 HANGERS AND SUPPORTS

- A. Hanger Rods for Noncorrosive Environments: Cadmium-plated steel rods and nuts.
- B. Strap and Rod Sizes: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct."
- C. Steel Cables for Galvanized-Steel Ducts: Galvanized steel complying with ASTM A 603.
- D. Steel Cable End Connections: Cadmium-plated steel assemblies with brackets, swivel, and bolts designed for duct hanger service; with an automatic-locking and clamping device.
- E. Duct Attachments: Sheet metal screws, blind rivets, or self-tapping metal screws; compatible with duct materials.
- F. Trapeze and Riser Supports:
 - 1. Supports for Galvanized-Steel Ducts: Galvanized-steel shapes and plates.

PART 3 - EXECUTION

3.1 DUCT INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings.
- B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated.
- C. Install ducts in maximum practical lengths.
- D. Install ducts with fewest possible joints.
- E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections.
- F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines.
- G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building.
- H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness.
- I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures.
- J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches.
- K. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "IAQ Guidelines for Occupied Buildings Under Construction," Appendix G, "Duct Cleanliness for New Construction Guidelines."

3.2 INSTALLATION OF EXPOSED DUCTWORK

- A. Protect ducts exposed in finished spaces from being dented, scratched, or damaged.
- B. Trim duct sealants flush with metal. Create a smooth and uniform exposed bead. Do not use two-part tape sealing system.

- C. Grind welds to provide smooth surface free of burrs, sharp edges, and weld splatter. When welding stainless steel with a No. 3 or 4 finish, grind the welds flush, polish the exposed welds, and treat the welds to remove discoloration caused by welding.
- D. Maintain consistency, symmetry, and uniformity in the arrangement and fabrication of fittings, hangers and supports, duct accessories, and air outlets.
- E. Repair or replace damaged sections and finished work that does not comply with these requirements.

3.3 ADDITIONAL INSTALLATION REQUIREMENTS FOR COMMERCIAL KITCHEN HOOD EXHAUST DUCT

- A. Install commercial kitchen hood exhaust ducts without dips and traps that may hold grease, and sloped a minimum of 2 percent to drain grease back to the hood.
- B. Install fire-rated access panel assemblies at each change in direction and at maximum intervals of 12 feet in horizontal ducts, and at every floor for vertical ducts, or as indicated on Drawings.
- C. Do not penetrate fire-rated assemblies except as allowed by applicable building codes and authorities having jurisdiction.

3.4 DUCT SEALING

- A. Seal ducts for duct static-pressure, seal classes, and leakage classes specified in "Duct Schedule" Article according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
- B. Seal ducts at a minimum to the following seal classes according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible":
 - 1. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible."
 - 2. All ductwork: Seal Class A.

3.5 HANGER AND SUPPORT INSTALLATION

- A. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 5, "Hangers and Supports."
- B. Building Attachments: Concrete inserts, powder-actuated fasteners, or structural-steel fasteners appropriate for construction materials to which hangers are being attached.
 - 1. Where practical, install concrete inserts before placing concrete.
 - 2. Install powder-actuated concrete fasteners after concrete is placed and completely cured.
 - 3. Use powder-actuated concrete fasteners for standard-weight aggregate concretes or for slabs more than 4 inches thick.

- 4. Do not use powder-actuated concrete fasteners for lightweight-aggregate concretes or for slabs less than 4 inches thick.
- 5. Do not use powder-actuated concrete fasteners for seismic restraints.
- C. Hanger Spacing: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 5-1, "Rectangular Duct Hangers Minimum Size," and Table 5-2, "Minimum Hanger Sizes for Round Duct," for maximum hanger spacing; install hangers and supports within 24 inches of each elbow and within 48 inches of each branch intersection.
- D. Hangers Exposed to View: Threaded rod and angle or channel supports.
- E. Support vertical ducts with steel angles or channel secured to the sides of the duct with welds, bolts, sheet metal screws, or blind rivets; support at each floor and at a maximum intervals of 16 feet.
- F. Install upper attachments to structures. Select and size upper attachments with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.

3.6 CONNECTIONS

- A. Make connections to equipment with flexible connectors complying with Section 233300 "Air Duct Accessories."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections.

3.7 FIELD QUALITY CONTROL

A. Perform tests and inspections.

3.8 START UP

A. Air Balance: Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC."

3.9 DUCT SCHEDULE

- A. Supply Ducts:
 - 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

- 2. Ducts Connected to Constant-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 3. Ducts Connected to Single Zone Variable-Air-Volume Air-Handling Units:
 - a. Pressure Class: Positive 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.
- 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 12.
 - d. SMACNA Leakage Class for Round and Flat Oval: 12.

B. Return Ducts:

- 1. Ducts Connected to Fan Coil Units, Furnaces, Heat Pumps, and Terminal Units:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 24.
- 2. Ducts Connected to Air-Handling Units <Insert equipment>:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 24.
- 3. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 24.

C. Exhaust Ducts:

- 1. Ducts Connected to Fans Exhausting (ASHRAE 62.1, Class 1 and 2) Air:
 - a. Pressure Class: Positive or negative 1-inch wg.

- b. Minimum SMACNA Seal Class: A.
- c. SMACNA Leakage Class for Rectangular: 24.
- d. SMACNA Leakage Class for Round and Flat Oval: 24.
- 2. Ducts Connected to Air-Handling Units:
 - a. Pressure Class: Positive or negative 2-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 24.
- 3. Ducts Connected to Commercial Kitchen Hoods: Comply with NFPA 96.
 - a. Pre-manufactured listed kitchen exhaust duct.
 - b. Pressure Class: Positive or negative 4-inch wg.
 - c. Airtight/Watertight.
- 4. Ducts Connected to Equipment Not Listed Above:
 - a. Pressure Class: Positive or negative 1-inch wg.
 - b. Minimum SMACNA Seal Class: A.
 - c. SMACNA Leakage Class for Rectangular: 24.
 - d. SMACNA Leakage Class for Round and Flat Oval: 24.
- D. Intermediate Reinforcement:
 - 1. Galvanized-Steel Ducts: Galvanized steel.
 - 2. Aluminum Ducts: Aluminum or galvanized sheet steel coated with zinc chromate.
- E. Double-Wall Duct Interstitial Insulation:
 - 1. Supply Air Ducts: 1 inch thick.
- F. Elbow Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Velocity 1000 fpm or Lower:
 - 1) Radius Type RE 1 with minimum 0.5 radius-to-diameter ratio.
 - 2) Mitered Type RE 4 without vanes.
 - b. Velocity 1000 to 1500 fpm:
 - 1) Radius Type RE 1 with minimum 1.0 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 0.5 radius-to-diameter ratio and two vanes.

- 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- c. Velocity 1500 fpm or Higher:
 - 1) Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - 2) Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - 3) Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 2. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-2, "Rectangular Elbows."
 - a. Radius Type RE 1 with minimum 1.5 radius-to-diameter ratio.
 - b. Radius Type RE 3 with minimum 1.0 radius-to-diameter ratio and two vanes.
 - c. Mitered Type RE 2 with vanes complying with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-3, "Vanes and Vane Runners," and Figure 4-4, "Vane Support in Elbows."
- 3. Round Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "Round Duct Elbows."
 - a. Minimum Radius-to-Diameter Ratio and Elbow Segments: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 3-1, "Mitered Elbows." Elbows with less than 90-degree change of direction have proportionately fewer segments.
 - 1) Velocity 1000 fpm or Lower: 0.5 radius-to-diameter ratio and three segments for 90-degree elbow.
 - 2) Velocity 1000 to 1500 fpm: 1.0 radius-to-diameter ratio and four segments for 90-degree elbow.
 - 3) Velocity 1500 fpm or Higher: 1.5 radius-to-diameter ratio and five segments for 90-degree elbow.
 - 4) Radius-to Diameter Ratio: 1.5.
 - b. Round Elbows, 12 Inches and Smaller in Diameter: Stamped or pleated.
 - c. Round Elbows, 14 Inches and Larger in Diameter: Welded.
- G. Branch Configuration:
 - 1. Rectangular Duct: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 4-6, "Branch Connection."
 - a. Rectangular Main to Rectangular Branch: 45-degree entry.
 - b. Rectangular Main to Round Branch: Spin in.

- 2. Round and Flat Oval: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-5, "90 Degree Tees and Laterals," and Figure 3-6, "Conical Tees." Saddle taps are permitted in existing duct.
 - a. Velocity 1000 fpm or Lower: 90-degree tap.
 - b. Velocity 1000 to 1500 fpm: Conical tap.
 - c. Velocity 1500 fpm or Higher: 45-degree lateral.

END OF SECTION 233113

SECTION 233300 - AIR DUCT ACCESSORIES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Manual volume dampers.
- 2. Control dampers.
- 3. Flange connectors.
- 4. Turning vanes.
- 5. Duct-mounted access doors.
- 6. Flexible connectors.
- 7. Duct accessory hardware.

B. Related Requirements:

1. Section 233346 "Flexible Ducts" for insulated and non-insulated flexible ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. For duct silencers, include pressure drop and dynamic insertion loss data. Include breakout noise calculations for high transmission loss casings.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For air duct accessories to include in operation and maintenance manuals.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."

B. Comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.

2.2 MATERIALS

- A. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M.
 - 1. Galvanized Coating Designation: G90.
 - 2. Exposed-Surface Finish: Mill phosphatized.
- B. Aluminum Sheets: Comply with ASTM B 209, Alloy 3003, Temper H14; with mill finish for concealed ducts and standard, 1-side bright finish for exposed ducts.
- C. Extruded Aluminum: Comply with ASTM B 221, Alloy 6063, Temper T6.
- D. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts.
- E. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches.

2.3 MANUAL VOLUME DAMPERS

- A. Low-Leakage, Steel, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. McGill AirFlow LLC.
 - b. Nailor Industries Inc.
 - c. Ruskin Company.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.
 - 5. Frames:
 - a. U shaped.
 - b. 0.094-inch-thick, galvanized sheet steel.
 - c. Mitered and welded corners.
 - d. Flanges for attaching to walls and flangeless frames for installing in ducts.
 - 6. Blades:

- a. Multiple or single blade.
- b. Parallel- or opposed-blade design.
- c. Stiffen damper blades for stability.
- d. Galvanized, roll-formed steel, 0.064 inch thick.
- 7. Blade Axles: Galvanized steel.
- 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 9. Blade Seals: Felt.
- 10. Jamb Seals: Cambered stainless steel.
- 11. Tie Bars and Brackets: Galvanized steel.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.
- B. Low-Leakage, Aluminum, Manual Volume Dampers:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. following:
 - 1) McGill AirFlow LLC.
 - 2) Nailor Industries Inc.
 - 3) Ruskin Company.
 - 2. Comply with AMCA 500-D testing for damper rating.
 - 3. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.
 - 4. Suitable for horizontal or vertical applications.
 - 5. Frames: U-shaped, 0.10-inch-thick, aluminum sheet channels; frames with flanges for attaching to walls and flangeless frames for installing in ducts.
 - 6. Blades:
 - a. Multiple or single blade.
 - b. Parallel- or opposed-blade design.
 - c. Roll-Formed Aluminum Blades: 0.10-inch-thick aluminum sheet.
 - d. Extruded-Aluminum Blades: 0.050-inch-thick extruded aluminum.
 - 7. Blade Axles: Stainless steel.
 - 8. Bearings:
 - a. Molded synthetic.
 - b. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.

- 9. Blade Seals: Felt.
- 10. Jamb Seals: Cambered aluminum.
- 11. Tie Bars and Brackets: Aluminum.
- 12. Accessories:
 - a. Include locking device to hold single-blade dampers in a fixed position without vibration.

C. Jackshaft:

- 1. Size: 0.5-inch diameter.
- 2. Material: Galvanized-steel pipe rotating within pipe-bearing assembly mounted on supports at each mullion and at each end of multiple-damper assemblies.
- 3. Length and Number of Mountings: As required to connect linkage of each damper in multiple-damper assembly.

D. Damper Hardware:

- 1. Zinc-plated, die-cast core with dial and handle made of 3/32-inch-thick zinc-plated steel, and a 3/4-inch hexagon locking nut.
- 2. Include center hole to suit damper operating-rod size.
- 3. Include elevated platform for insulated duct mounting.

2.4 CONTROL DAMPERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Greenheck Fan Corporation.
 - 2. McGill AirFlow LLC.
 - 3. Ruskin Company.
- B. Low-leakage rating, with linkage outside airstream, and bearing AMCA's Certified Ratings Seal for both air performance and air leakage.

C. Frames:

- 1. Hat shaped.
- 2. 0.094-inch-thick, galvanized sheet steel.
- 3. Mitered and welded corners.

D. Blades:

- 1. Multiple blade with maximum blade width of 6 inches.
- 2. Parallel- and opposed-blade design.
- 3. Galvanized-steel.
- 4. 0.064 inch thick single skin.
- 5. Blade Edging: Closed-cell neoprene.
- 6. Blade Edging: Inflatable seal blade edging, or replaceable rubber seals.

- E. Blade Axles: 1/2-inch-diameter; galvanized steel; blade-linkage hardware of zinc-plated steel and brass; ends sealed against blade bearings.
 - 1. Operating Temperature Range: From minus 40 to plus 200 deg F.

F. Bearings:

- 1. Molded synthetic.
- 2. Dampers in ducts with pressure classes of 3-inch wg or less shall have axles full length of damper blades and bearings at both ends of operating shaft.
- 3. Thrust bearings at each end of every blade.

2.5 FLANGE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ductmate Industries, Inc.
 - 2. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Description: Add-on or roll-formed, factory-fabricated, slide-on transverse flange connectors, gaskets, and components.
- C. Material: Galvanized steel.
- D. Gage and Shape: Match connecting ductwork.

2.6 TURNING VANES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ductmate Industries, Inc.
 - 2. METALAIRE, Inc.
 - 3. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Manufactured Turning Vanes for Metal Ducts: Curved blades of galvanized sheet steel; support with bars perpendicular to blades set; set into vane runners suitable for duct mounting.
- C. General Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 4-3, "Vanes and Vane Runners," and 4-4, "Vane Support in Elbows."
- D. Vane Construction: Single wall.
- E. Vane Construction: Single wall for ducts up to 48 inches wide and double wall for larger dimensions.

2.7 DUCT-MOUNTED ACCESS DOORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ductmate Industries, Inc.
 - 2. Greenheck Fan Corporation.
 - 3. McGill AirFlow LLC.
- B. Duct-Mounted Access Doors: Fabricate access panels according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible"; Figures 7-2, "Duct Access Doors and Panels," and 7-3, "Access Doors Round Duct."
 - 1. Door:
 - a. Double wall, rectangular.
 - b. Galvanized sheet metal with insulation fill and thickness as indicated for duct pressure class.
 - c. Vision panel.
 - d. Hinges and Latches: 1-by-1-inchbutt or piano hinge and cam latches.
 - e. Fabricate doors airtight and suitable for duct pressure class.
 - 2. Frame: Galvanized sheet steel, with bend-over tabs and foam gaskets.
 - 3. Number of Hinges and Locks:
 - a. Access Doors Less Than 12 Inches Square: No hinges and two sash locks.
 - b. Access Doors up to 18 Inches Square: Two hinges and two sash locks.
 - c. Access Doors up to 24 by 48 Inches: Three hinges and two compression latches with outside and inside handles.

2.8 FLEXIBLE CONNECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Ductmate Industries, Inc.
 - 2. Ward Industries; a brand of Hart & Cooley, Inc.
- B. Materials: Flame-retardant or noncombustible fabrics.
- C. Coatings and Adhesives: Comply with UL 181, Class 1.
- D. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch-wide, 0.028-inch-thick, galvanized sheet steel or 0.032-inch-thick aluminum sheets. Provide metal compatible with connected ducts.
- E. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene.
 - 1. Minimum Weight: 26 oz./sq. yd..

- 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling.
- 3. Service Temperature: Minus 40 to plus 200 deg F.
- F. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone.
 - 1. Minimum Weight: 24 oz./sq. yd..
 - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling.
 - 3. Service Temperature: Minus 50 to plus 250 deg F.
- G. Thrust Limits: Combination coil spring and elastomeric insert with spring and insert in compression, and with a load stop. Include rod and angle-iron brackets for attaching to fan discharge and duct.
 - 1. Frame: Steel, fabricated for connection to threaded rods and to allow for a maximum of 30 degrees of angular rod misalignment without binding or reducing isolation efficiency.
 - 2. Outdoor Spring Diameter: Not less than 80 percent of the compressed height of the spring at rated load.
 - 3. Minimum Additional Travel: 50 percent of the required deflection at rated load.
 - 4. Lateral Stiffness: More than 80 percent of rated vertical stiffness.
 - 5. Overload Capacity: Support 200 percent of rated load, fully compressed, without deformation or failure.
 - 6. Elastomeric Element: Molded, oil-resistant rubber or neoprene.
 - 7. Coil Spring: Factory set and field adjustable for a maximum of 1/4-inch movement at start and stop.

2.9 DUCT ACCESSORY HARDWARE

- A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct-insulation thickness.
- B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts.

- C. Compliance with ASHRAE/IESNA 90.1-2004 includes Section 6.4.3.3.3 "Shutoff Damper Controls," restricts the use of backdraft dampers, and requires control dampers for certain applications. Install dampers at inlet of exhaust fans or exhaust ducts as close as possible to exhaust fan unless otherwise indicated per drawings.
- D. Install volume dampers at points on supply, return, and exhaust systems where branches extend from larger ducts. Where dampers are installed in ducts having duct liner, install dampers with hat channels of same depth as liner, and terminate liner with nosing at hat channel.
 - 1. Install steel volume dampers in steel ducts.
 - 2. Install aluminum volume dampers in aluminum ducts.
- E. Set dampers to fully open position before testing, adjusting, and balancing.
- F. Install test holes at fan inlets and outlets and elsewhere as indicated.
- G. Install duct access doors on sides of ducts to allow for inspecting, adjusting, and maintaining accessories and equipment at the following locations:
 - 1. On both sides of duct coils.
 - 2. Upstream from duct filters.
 - 3. At outdoor-air intakes and mixed-air plenums.
 - 4. At drain pans and seals.
 - 5. Downstream from manual volume dampers, control dampers, backdraft dampers, and equipment.
 - 6. Upstream from turning vanes.
 - 7. Control devices requiring inspection.
- H. Install access doors with swing against duct static pressure.
- I. Access Door Sizes:
 - 1. One-Hand or Inspection Access: 8 by 5 inches.
 - 2. Two-Hand Access: 12 by 6 inches.
 - 3. Head and Hand Access: 18 by 10 inches.
 - 4. Head and Shoulders Access: 21 by 14 inches.
- J. Label access doors according to Section 230553 "Identification for HVAC Piping and Equipment" to indicate the purpose of access door.
- K. Install flexible connectors to connect ducts to equipment.
- L. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- M. Connect diffusers or light troffer boots to ducts directly or with maximum 60-inch lengths of flexible duct clamped or strapped in place.
- N. Connect flexible ducts to metal ducts with draw bands.

- O. Install duct test holes where required for testing and balancing purposes.
- P. Install thrust limits at centerline of thrust, symmetrical on both sides of equipment. Attach thrust limits at centerline of thrust and adjust to a maximum of 1/4-inch movement during start and stop of fans.

3.2 FIELD QUALITY CONTROL

A. Tests and Inspections:

- 1. Operate dampers to verify full range of movement.
- 2. Inspect locations of access doors and verify that purpose of access door can be performed.
- 3. Inspect turning vanes for proper and secure installation.

END OF SECTION 233300

SECTION 233346 - FLEXIBLE DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Insulated flexible ducts.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

PART 2 - PRODUCTS

2.1 ASSEMBLY DESCRIPTION

- A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and with NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems."
- B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections.
- C. Comply with the Air Diffusion Council's "ADC Flexible Air Duct Test Code FD 72-R1."
- D. Comply with ASTM E 96/E 96M, "Test Methods for Water Vapor Transmission of Materials."

2.2 INSULATED FLEXIBLE DUCTS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Flexmaster U.S.A., Inc.
 - 2. McGill AirFlow LLC.
 - 3. Thermaflex; a Flex-Tek Group company.

FLEXIBLE DUCTS 233346 - 1

- B. Insulated, Flexible Duct: UL 181, Class 1, two-ply vinyl film supported by helically wound, spring-steel wire; fibrous-glass insulation; aluminized vapor-barrier film.
 - 1. Pressure Rating: 10-inch wg positive and 1.0-inch wg negative.
 - 2. Maximum Air Velocity: 4000 fpm.
 - 3. Temperature Range: Minus 10 to plus 160 deg F.
 - 4. Insulation R-Value: R6.

2.3 FLEXIBLE DUCT CONNECTORS

A. Clamps: Stainless-steel band with cadmium-plated hex screw to tighten band with a worm-gear action in sizes 3 through 18 inches, to suit duct size.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install flexible ducts according to applicable details in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts.
- B. Install in indoor applications only. Flexible ductwork should not be exposed to UV lighting.
- C. Connect terminal units to supply ducts directly or with maximum 12-inch lengths of flexible duct. Do not use flexible ducts to change directions.
- D. Connect flexible ducts to metal ducts with draw bands.
- E. Install duct test holes where required for testing and balancing purposes.

F. Installation:

- 1. Install ducts fully extended.
- 2. Do not bend ducts across sharp corners.
- 3. Bends of flexible ducting shall not exceed a minimum of one duct diameter.
- 4. Avoid contact with metal fixtures, water lines, pipes, or conduits.
- 5. Install flexible ducts in a direct line, without sags, twists, or turns.

G. Supporting Flexible Ducts:

- 1. Suspend flexible ducts with bands 1-1/2 inches wide or wider and spaced a maximum of 48 inches apart. Maximum centerline sag between supports shall not exceed 1/2 inch per 12 inches.
- 2. Install extra supports at bends placed approximately one duct diameter from center line of the bend.
- 3. Ducts may rest on ceiling joists or truss supports. Spacing between supports shall not exceed the maximum spacing per manufacturer's written installation instructions.
- 4. Vertically installed ducts shall be stabilized by support straps at a maximum of 72 inches o.c.

END OF SECTION 233346

FLEXIBLE DUCTS 233346 - 2

SECTION 233423 - HVAC POWER VENTILATORS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Centrifugal roof ventilators.
 - 2. In-line centrifugal fans.

1.3 PERFORMANCE REQUIREMENTS

- A. Project Altitude: Base fan-performance ratings on sea level.
- B. Operating Limits: Classify according to AMCA 99.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product indicated. Include rated capacities, operating characteristics, and furnished specialties and accessories. Also include the following:
 - 1. Certified fan performance curves with system operating conditions indicated.
 - 2. Certified fan sound-power ratings.
 - 3. Motor ratings and electrical characteristics, plus motor and electrical accessories.
 - 4. Material thickness and finishes, including color charts.
 - 5. Dampers, including housings, linkages, and operators.
 - 6. Roof curbs.
 - 7. Fan speed controllers.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For power ventilators to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1.7 QUALITY ASSURANCE

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. AMCA Compliance: Fans shall have AMCA-Certified performance ratings and shall bear the AMCA-Certified Ratings Seal.
- C. UL Standards: Power ventilators shall comply with UL 705. Power ventilators for use for restaurant kitchen exhaust shall also comply with UL 762.

1.8 COORDINATION

- A. Coordinate size and location of structural-steel support members.
- B. Coordinate sizes and locations of concrete bases with actual equipment provided.
- C. Coordinate sizes and locations of roof curbs, equipment supports, and roof penetrations with actual equipment provided.

PART 2 - PRODUCTS

2.1 CENTRIFUGAL ROOF VENTILATORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Greenheck Fan Corporation.
 - 3. Loren Cook Company.
- B. Housing: Removable, spun-aluminum, dome top and outlet baffle; square, one-piece, aluminum base with venturi inlet cone.
 - 1. Upblast Units: Provide spun-aluminum discharge baffle to direct discharge air upward, with rain and snow drains and grease collector.
 - 2. Hinged Subbase: Galvanized-steel hinged arrangement permitting service and maintenance.
- C. Fan Wheels: Aluminum hub and wheel with backward-inclined blades.

D. Accessories:

- 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
- 2. Disconnect Switch: Nonfusible type, with thermal-overload protection mounted outside fan housing, factory wired through an internal aluminum conduit.
- 3. Bird Screens: Removable, 1/2-inch mesh, aluminum or brass wire.

- E. Roof Curbs: Galvanized steel; mitered and welded corners; 1-1/2-inch-thick, rigid, fiberglass insulation adhered to inside walls; and 1-1/2-inch wood nailer. Size as required to suit roof opening and fan base.
 - 1. Configuration: Self-flashing without a cant strip, with mounting flange.
 - 2. Overall Height: 18 inches.
 - 3. Sound Curb: Curb with sound-absorbing insulation.
 - 4. Pitch Mounting: Manufacture curb for roof slope.
 - 5. Metal Liner: Galvanized steel.
 - 6. Mounting Pedestal: Galvanized steel with removable access panel.

2.2 IN-LINE CENTRIFUGAL FANS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Acme Engineering & Manufacturing Corp.
 - 2. Greenheck Fan Corporation.
 - 3. Loren Cook Company.
- B. Housing: Split, spun aluminum with aluminum straightening vanes, inlet and outlet flanges, and support bracket adaptable to floor, side wall, or ceiling mounting.
- C. Direct-Drive Units: Motor mounted in airstream, factory wired to disconnect switch located on outside of fan housing.
- D. Fan Wheels: Aluminum, backward inclined blades welded to aluminum hub.
- E. Accessories:
 - 1. Variable-Speed Controller: Solid-state control to reduce speed from 100 to less than 50 percent.
 - 2. Companion Flanges: For inlet and outlet duct connections.
 - 3. Fan Guards: 1/2- by 1-inch mesh of galvanized steel in removable frame. Provide guard for inlet or outlet for units not connected to ductwork.
 - 4. Motor and Drive Cover (Belt Guard): Epoxy-coated steel.
 - 5. Vibration Isolators:
 - a. Type: Elastomeric hangers.
 - b. Static Deflection: 1 inch.

2.3 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

- 1. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.
- B. Enclosure Type: Totally enclosed, fan cooled.

2.4 SOURCE QUALITY CONTROL

- A. Certify sound-power level ratings according to AMCA 301, "Methods for Calculating Fan Sound Ratings from Laboratory Test Data." Factory test fans according to AMCA 300, "Reverberant Room Method for Sound Testing of Fans." Label fans with the AMCA-Certified Ratings Seal.
- B. Certify fan performance ratings, including flow rate, pressure, power, air density, speed of rotation, and efficiency by factory tests according to AMCA 210, "Laboratory Methods of Testing Fans for Aerodynamic Performance Rating." Label fans with the AMCA-Certified Ratings Seal.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Install power ventilators level and plumb.
- B. Secure roof-mounted fans to roof curbs with cadmium-plated hardware.
- C. Ceiling Units: Suspend units from structure; use steel wire or metal straps.
- D. Support suspended units from structure using threaded steel rods and elastomeric hangers having a static deflection of 1 inch.
- E. Install units with clearances for service and maintenance.
- F. Label units according to requirements specified in Section 230553 "Identification for HVAC Piping and Equipment."

3.2 CONNECTIONS

- A. Drawings indicate general arrangement of ducts and duct accessories. Make final duct connections with flexible connectors. Flexible connectors are specified in Section 233300 "Air Duct Accessories."
- B. Install ducts adjacent to power ventilators to allow service and maintenance.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."

D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.3 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing.

B. Tests and Inspections:

- 1. Verify that shipping, blocking, and bracing are removed.
- 2. Verify that unit is secure on mountings and supporting devices and that connections to ducts and electrical components are complete. Verify that proper thermal-overload protection is installed in motors, starters, and disconnect switches.
- 3. Verify that cleaning and adjusting are complete.
- 4. Disconnect fan drive from motor, verify proper motor rotation direction, and verify fan wheel free rotation and smooth bearing operation. Reconnect fan drive system, align and adjust belts, and install belt guards.
- 5. Adjust damper linkages for proper damper operation.
- 6. Verify lubrication for bearings and other moving parts.
- 7. Verify that manual and automatic volume control and fire and smoke dampers in connected ductwork systems are in fully open position.
- 8. Disable automatic temperature-control operators, energize motor and adjust fan to indicated rpm, and measure and record motor voltage and amperage.
- 9. Shut unit down and reconnect automatic temperature-control operators.
- 10. Remove and replace malfunctioning units and retest as specified above.
- C. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. Prepare test and inspection reports.

3.4 ADJUSTING

- A. Adjust damper linkages for proper damper operation.
- B. Comply with requirements in Section 230593 "Testing, Adjusting, and Balancing for HVAC" for testing, adjusting, and balancing procedures.
- C. Replace fan and motor pulleys as required to achieve design airflow.
- D. Lubricate bearings.

END OF SECTION 233423

SECTION 233533 - LISTED KITCHEN VENTILATION SYSTEM EXHAUST DUCTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Listed grease ducts.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for listed grease ducts.
- B. Shop Drawings: For listed grease ducts.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.

1.4 QUALITY ASSURANCE

- A. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports.
 - 2. AWS D9.1/D9.1M, "Sheet Metal Welding Code," for shop and field welding of joints and seams in listed grease ducts and field-fabricated grease ducts.

PART 2 - PRODUCTS

2.1 LISTED GREASE DUCTS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. Heat-Fab, Inc.
- 2. McGill AirFlow LLC.
- 3. Metal-Fab. Inc.
- 4. Schebler Co. (The).
- B. Description: Factory-fabricated, -listed, and -labeled, double-wall ducts tested according to UL 1978 and rated for 500 deg F continuously, or 2000 deg F for 30 minutes; with positive or negative duct pressure and complying with NFPA 211.
- C. Construction: Inner shell and outer jacket separated by at least a 1-inch annular space filled with high-temperature, ceramic-fiber insulation.
 - 1. Inner Shell: ASTM A 666, Type 316 stainless steel.
 - 2. Outer Jacket: Stainless steel where concealed. Stainless steel where exposed.
- D. Gaskets and Flanges: Ensure that gaskets and sealing materials are rated at 1500 deg F minimum.
- E. Hood Connectors: Constructed from same material as grease duct with internal or external continuously welded or brazed joints.
- F. Accessories: Tees, elbows, increasers, terminations, adjustable roof flashings, storm collars, support assemblies, thimbles, firestop spacers, and fasteners; fabricated from similar materials and designs as vent-pipe straight sections; all listed for same assembly. Include unique components required to comply with NFPA 96 including cleanouts, transitions, adapters, and drain fittings.
- G. Grease Duct Supports: Construct duct bracing and supports from non-combustible material.
 - 1. Design bracing and supports to carry static and seismic loads within stress limitations of the International Building Code.
 - 2. Ensure that bolts, screws, rivets and other mechanical fasteners do not penetrate duct walls.
- H. Comply with ASTM E 2336.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate installation of roof curbs, equipment supports, and roof penetrations.
- B. Coordinate connections to kitchen exhaust hoods with requirements in Section 233813 "Commercial-Kitchen Hoods."
- C. Coordinate connections to exhaust fans with requirements in Section 233423 "HVAC Power Ventilators."
- D. Comply with minimum clearances from combustibles and minimum termination heights according to product listing or NFPA 211 and UL 2221, whichever is most stringent.
- E. Install airtight maintenance access doors as required.
- F. Seal between sections of grease exhaust ducts according to manufacturer's written installation instructions, using sealants recommended by manufacturer.
- G. Connections: Make grease duct connections according to the International Mechanical Code.
 - 1. Grease duct to exhaust fan connections: Connect grease ducts to inlet side of fan using flanges, gaskets, and bolts.
 - 2. Grease duct to hood connections:
 - a. Make grease duct to hood joints connections using internal or external continuously welded or brazed joints.
 - b. Make watertight grease duct to hood joints connections using flanges, gaskets, and bolts.
- H. Support ducts at intervals recommended by manufacturer to support weight of ducts and accessories, without applying loading on kitchen hoods.
 - 1. Securely attach supports and bracing to structure.
- I. Grease Duct Enclosures: Comply with requirements of the International Building Code and ASTM E 2336.
- J. Repair damage to adjacent materials caused by listed kitchen ventilation system exhaust ducts installation.

3.3 FIELD OUALITY CONTROL

- A. Perform air leakage test before concealment of any portion of the grease duct system.
 - 1. Notify Owner a minimum of two days before test is performed.

END OF SECTION 233533

SECTION 233713.13 - AIR DIFFUSERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Round ceiling diffusers.
- 2. Rectangular and square ceiling diffusers.

B. Related Requirements:

1. Section 233300 "Air Duct Accessories" for volume-control dampers not integral to diffusers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Diffuser Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 ROUND CEILING DIFFUSERS (S3)

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Price Industries.
 - 2. Titus.
 - 3. Tuttle & Bailey.
- B. Devices shall be specifically designed for variable-air-volume flows.
- C. Material: Aluminum.

AIR DIFFUSERS 233713.13 - 1

- D. Finish: White powder coat.
- E. Face Style: Three cone.
- F. Mounting: Duct connection.
- G. Pattern: Fully adjustable.

2.2 SQUARE CEILING DIFFUSERS (S1 and S2)

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Price Industries.
 - 2. Titus.
 - 3. Tuttle & Bailey.
- B. Devices shall be specifically designed for variable-air-volume flows.
- C. Material: Aluminum.
- D. Finish: White powder coat.
- E. Face Size: 24 by 24 inches and 12 by 12 inches.
- F. Face Style: Three cone.
- G. Mounting: Surface or T-bar.
- H. Pattern: Adjustable.

2.3 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate diffusers according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where diffusers are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

AIR DIFFUSERS 233713.13 - 2

3.2 INSTALLATION

- A. Install diffusers level and plumb.
- B. Ceiling-Mounted Outlets and Inlets: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install diffusers with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust diffusers to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.13

AIR DIFFUSERS 233713.13 - 3

SECTION 233713.23 - REGISTERS AND GRILLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Adjustable blade face grilles.
- 2. Fixed face grilles.
- 3. Eggcrate grilles

B. Related Requirements:

- 1. Section 233300 "Air Duct Accessories" for fire and smoke dampers and volume-control dampers not integral to registers and grilles.
- 2. Section 233713.13 "Air Diffusers" for various types of air diffusers.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
 - 2. Register and Grille Schedule: Indicate drawing designation, room location, quantity, model number, size, and accessories furnished.

PART 2 - PRODUCTS

2.1 GRILLES

A. Adjustable Blade Face Grille (S4):

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Price Industries.
 - b. Titus.
 - c. Tuttle & Bailey.

- 2. Material: Aluminum.
- 3. Finish: White powder coat.
- 4. Face Blade Arrangement: Horizontal spaced 3/4 inch apart.
- 5. Rear-Blade Arrangement: Vertical spaced 3/4 inch apart.
- 6. Frame: 1-1/4 inches wide.
- 7. Mounting: Countersunk screw.

B. Fixed Face Grille (R3 and E3):

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Price Industries.
 - b. Titus.
 - c. Tuttle & Bailey.
- 2. Material: Aluminum.
- 3. Finish: White powder coat.
- 4. Face Blade Arrangement: Horizontal; spaced 3/4 inch apart, 45 degree deflection.
- 5. Frame: 1-1/4 inches wide.
- 6. Mounting: Countersunk screw.

C. Eggcrate Grille (R1, E1, and E2):

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Price Industries.
 - b. Titus.
 - c. Tuttle & Bailey.
- 2. Material: Aluminum.
- 3. Finish: White powder coat.
- 4. Face Arrangement: 0.5 x 0.5 x 0.5 inch grid and an extruded aluminum border.
- 5. Frame: 1-1/4 inches wide.
- 6. Mounting: Surface or T-bar.

2.2 SOURCE QUALITY CONTROL

A. Verification of Performance: Rate registers and grilles according to ASHRAE 70, "Method of Testing for Rating the Performance of Air Outlets and Inlets."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas where registers and grilles are installed for compliance with requirements for installation tolerances and other conditions affecting performance of equipment.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install registers and grilles level and plumb.
- B. Outlets and Inlets Locations: Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet and inlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. For units installed in lay-in ceiling panels, locate units in the center of panel. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- C. Install registers and grilles with airtight connections to ducts and to allow service and maintenance of dampers, air extractors, and fire dampers.

3.3 ADJUSTING

A. After installation, adjust registers and grilles to air patterns indicated, or as directed, before starting air balancing.

END OF SECTION 233713.23

SECTION 233716 - FABRIC AIR-DISTRIBUTION DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes continuous, tubular, fabric air-distribution devices.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Data Sheet: Indicate materials of construction, finish, and mounting details; and performance data including throw and drop, static-pressure drop, and noise ratings.
- B. Shop Drawings: For fabric air-distribution devices.
 - 1. Include plans, elevations, sections, and suspension and attachment details.
 - 2. Indicate diffuser performance including throw and acoustic data.
- C. Diffuser Schedule: Use same designations indicated on Drawings. Indicate room location, quantity, model number, size, and accessories furnished.

1.4 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Reflected ceiling plans, drawn to scale, on which the following items are shown and coordinated with each other, using input from Installers of the items involved:
 - 1. Ceiling suspension assembly members.
 - 2. Method of attaching hangers to building structure.
 - 3. Ceiling-mounted items including lighting fixtures, diffusers, grilles, speakers, sprinklers, access panels, and special moldings.
- B. Provide detailed installation instructions for components to be installed.
- C. Source quality-control reports.

1.5 WARRENTY

A. Manufacturer must provide a minimum 10 Year Product Warranty for products supply for the fabric portion of the system as well as a Design and Performance Warranty.

1.6 DELIVERY, STORAGE AND HANDLING

- A. Protect textile air dispersion system and components from damage during shipping, storage, and handling.
- B. Store products inside and protect from weather.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. DuctSox Corp.
 - 2. FabricAir Inc.
 - 3. KE Fibertec NA, Inc.

2.2 PERFORMANCE REQUIREMENTS

- A. Continuous tubular diffuser materials shall be listed and labeled as complying with UL 2518.
- B. Air permeability of fabric will comply with ASTM D737.

2.3 CONTINUOUS TUBULAR DIFFUSERS

A. Description:

- 1. Fabric: Woven polyester.
- 2. Shape: Round.
- 3. Air-Outlet Configuration: Permeable fabric.
- 4. Air-Outlet Configuration: Circumferential hole pattern with diffusion-hole diameter and spacing to be determined by manufacturer.
- 5. Air-Outlet Configuration: Lengthwise mesh.
- 6. Air-Outlet Configuration: Lengthwise hole pattern; with diffusion-hole diameter to be determined by manufacturer.
- 7. Color: Submit color chart. Color to be chosen by Architect.
- B. Duct Connection Type: Round zipper.

C. Accessories:

- 1. Quick-connect joint.
- 2. Snap hooks.
- 3. Cleanout zipper.
- 4. End cap.
- 5. Draw cords.
- 6. Removable support hoops.

PART 3 - EXECUTION

3.1 INSTALLATION

- A. Drawings indicate general arrangement of ducts, fittings, and accessories. Air outlet locations have been indicated to achieve design requirements for air volume, noise criteria, airflow pattern, throw, and pressure drop. Make final locations where indicated, as much as practical. Where architectural features or other items conflict with installation, notify Architect for a determination of final location.
- B. Protect fabric duct from dust and debris during construction. If fabric duct system becomes soiled during installation, it should be removed and cleaned following the manufacturers standard terms of laundry.

END OF SECTION 233716

SECTION 233813 - COMMERCIAL-KITCHEN HOODS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes Type I commercial-kitchen hoods.
- B. Related Requirements:
 - 1. Section 233533 "Listed Kitchen Ventilation System Exhaust Ducts" for fire-rated ducts connecting to kitchen hoods.

1.3 DEFINITIONS

- A. Listed Hood: A hood, factory fabricated and tested for compliance with UL 710 by a testing agency acceptable to authorities having jurisdiction.
- B. Standard Hood: A hood, usually field fabricated, that complies with design, construction, and performance criteria of applicable national and local codes.
- C. Type I Hood: A hood designed for grease exhaust applications.
- D. Type II Hood: A hood designed for heat and steam removal and for other nongrease applications.

1.4 ACTION SUBMITTALS

- A. Product Data: For the following:
 - 1. Listed Type 1 hoods.
 - 2. Filters/baffles.
 - 3. Fire-suppression systems.
 - 4. Luminaires.
- B. Shop Drawings: Signed and sealed by a qualified professional engineer.
 - 1. Shop Drawing Scale: 1/4 inch = 1 foot.
 - 2. Show plan view, elevation view, sections, roughing-in dimensions, service requirements, duct connection sizes, and attachments to other work.

- 3. Show cooking equipment plan and elevation to confirm minimum code-required overhang.
- 4. Indicate performance, exhaust and makeup air airflow, and pressure loss at actual Project-site elevation.
- 5. Show water-supply and drain piping connections.
- 6. Show control cabinets.
- 7. Show fire-protection cylinders, piping, actuation devices, and manual control devices.
- 8. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 9. Include diagrams for power, signal, and control wiring.
- 10. Duct Connections: Detail connections between ducts and hoods, including access doors and panels.
- 11. Piping Diagrams: Detail fire-suppression piping and components and differentiate between manufacturer-installed and field-installed piping. Include roughing-in requirements for drain connections. Show cooking equipment plan and elevation to illustrate fire-suppression nozzle locations.
 - a. Piping Diagram Scale: 1/4 inch = 1 foot.

1.5 INFORMATIONAL SUBMITTALS

- A. Welding certificates.
- B. Field quality-control reports.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Grease Filters/Baffles: One complete set(s).

1.7 QUALITY ASSURANCE

- A. Engineering Responsibility: Preparation of Shop Drawings and comprehensive engineering analysis by a qualified professional engineer.
- B. Welding Qualifications: Qualify procedures and personnel according to AWS D1.1/D 1.1M, "Structural Welding Code Steel," for hangers and supports; and AWS D9.1/D9.1M, "Sheet Metal Welding Code," for joint and seam welding.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 HOOD MATERIALS

- A. Stainless-Steel Sheet: ASTM A 666, Type 304.
 - 1. Minimum Thickness: 0.050 inch.
 - 2. Finish: Comply with SSINA's "Finishes for Stainless Steel" for recommendations for applying and designating finishes.
 - a. Finish shall be free from tool and die marks and stretch lines and shall have uniform, directionally textured, polished finish indicated, free of cross scratches. Grain shall run with long dimension of each piece.
 - 3. Concealed Stainless-Steel Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished finish).
 - 4. Exposed Surfaces: ASTM A 480/A 480M, No. 2B finish (bright, cold-rolled, unpolished).
 - 5. Exposed Surfaces: ASTM A 480/A 480M, No. 3 finish (intermediate polished surface).
 - 6. Exposed Surfaces: ASTM A 480/A 480M, No. 4 finish (directional satin).
 - 7. Exposed Surfaces: ASTM A 480/A 480M, No. 6 finish (dull satin).
 - 8. Exposed Surfaces: ASTM A 480/A 480M, No. 7 finish (reflective, directional polish).
 - 9. Exposed Surfaces: ASTM A 480/A 480M, No. 8 finish (mirrorlike reflective, nondirectional polish).
 - 10. When polishing is completed, passivate and rinse surfaces. Remove embedded foreign matter and leave surfaces chemically clean.
- B. Sealant: ASTM C 920; Type S, Grade NS, Class 25, Use NT. Elastomeric sealant shall be NSF certified for commercial-kitchen hood application. Sealants, when cured and washed, shall comply with requirements in 21 CFR 177.2600, for use in areas that come in contact with food.
 - 1. Color: As selected by Architect from manufacturer's full range.
 - 2. Backer Rod: Closed-cell polyethylene, in diameter larger than joint width.
- C. Sound Dampening: NSF-certified, non-absorbent, hard-drying, sound-deadening compound for permanent adhesion to metal in minimum 1/8-inch thickness that does not chip, flake, or blister.
- D. Gaskets: NSF certified for end-use application indicated; of resilient rubber, neoprene, or PVC that is nontoxic, stable, odorless, nonabsorbent, and unaffected by exposure to foods and cleaning compounds, and that passes testing according to UL 710.

2.3 GENERAL HOOD FABRICATION REQUIREMENTS

- A. Welding: Use welding rod of same composition as metal being welded. Use methods that minimize distortion and develop strength and corrosion resistance of base metal. Make ductile welds free of mechanical imperfections such as gas holes, pits, or cracks.
 - 1. Welded Butt Joints: Full-penetration welds for full-joint length. Make joints flat, continuous, and homogenous with sheet metal without relying on straps under seams, filling in with solder, or spot welding.
 - 2. Grind exposed welded joints flush with adjoining material and polish to match adjoining surfaces.
 - 3. Where fasteners are welded to underside of equipment, finish reverse side of weld smooth and flush.
 - 4. Coat concealed stainless-steel welded joints with metallic-based paint to prevent corrosion.
 - 5. After zinc-coated steel is welded, clean welds and abraded areas and apply SSPC-Paint 20, high-zinc-dust-content, galvanizing repair paint to comply with ASTM A 780/A 780M.
- B. For metal butt joints, comply with SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."
- C. Where stainless steel is joined to a dissimilar metal, use stainless-steel welding material or fastening devices.
- D. Form metal with break bends that are not flaky, scaly, or cracked in appearance; where breaks mar uniform surface appearance of material, remove marks by grinding, polishing, and finishing.
- E. Sheared Metal Edges: Finish free of burrs, fins, and irregular projections.
- F. In food zones, as defined in NSF, fabricate surfaces free from exposed fasteners.
- G. Cap exposed fastener threads, including those inside cabinets, with stainless-steel lock washers and stainless-steel cap (acorn) nuts.
- H. Fabricate pipe slots on equipment with turned-up edges sized to accommodate service and utility lines and mechanical connections.
- I. Fabricate enclosures, including panels, housings, and skirts, to conceal service lines, operating components, and mechanical and electrical devices including those inside cabinets unless otherwise indicated.
- J. Fabricate seismic restraints according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines," Appendix A, "Seismic Restraint Details."
- K. Fabricate equipment edges and backsplashes according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines."
- L. Fabricate enclosure panels to ceiling and wall as follows:

- 1. Fabricate panels on one side(s) with same material as hood, and extend from ceiling to top of hood canopy and from canopy to wall.
- 2. Wall Offset Spacer: Minimum of 3 inches.
- 3. Wall Shelves and Overshelves: Fabricate according to SMACNA's "Kitchen Ventilation Systems & Food Service Equipment Guidelines," with minimum 0.0625-inch-thick, stainless-steel shelf tops.

2.4 TYPE I EXHAUST HOOD FABRICATION

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Captive-Aire Systems.
 - 2. Greenheck Fan Corporation.
 - 3. Halton Company.
- B. Weld all joints exposed to grease with continuous welds, and make filters/baffles or grease extractors and makeup air diffusers easily accessible for cleaning.
 - 1. Fabricate hoods according to NSF 2, "Food Equipment."
 - 2. Hoods shall be listed and labeled, according to UL 710, by a testing agency acceptable to authorities having jurisdiction.
 - 3. Hoods shall be designed, fabricated, and installed according to NFPA 96.
 - 4. Include access panels as required for access to fire dampers and fusible links.
 - 5. Duct Collars: Minimum 0.0598-inch-thick steel at least 3 inches long, continuously welded to top of hood and at corners.
- C. Hood Configuration: Exhaust and makeup air.
 - 1. Makeup air shall be introduced through laminar-flow-type, perforated metal panels on front of hood canopy.
- D. Hood Style: Wall-mounted canopy.
- E. Filters/Baffles: Removable, stainless-steel. Fabricate stainless steel for filter frame and removable collection cup and pitched trough. Exposed surfaces shall be pitched to drain to collection cup. Filters/baffles shall be tested according to UL 1046, "Safety for Grease Filters for Exhaust Ducts," by an NRTL acceptable to authorities having jurisdiction.
- F. Removable Water-Wash Grease Extractor: Stainless steel, tested with hood according to UL 710.
- G. Luminaires: Fluorescent luminaires and lamps with lenses sealed vapor tight. Wiring shall be in conduit on hood exterior. Number and location of luminaires shall provide a minimum of 70 fc at 30 inches above finished floor.
 - 1. Light switches shall be mounted on front panel of hood canopy or on wall adjacent to hood
 - 2. Luminaires: Fluorescent complying with UL 1598.

- H. Comply with hood control requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC".
- I. Hood Controls: Hood-mounting control cabinet, fabricated of stainless steel.
 - 1. Exhaust Fan: On-off switches shall start and stop the exhaust fan. Interlock exhaust fan with makeup air supply fan to operate simultaneously. Interlock exhaust fan with fire-suppression system to operate fan(s) during fire-suppression-agent release and to remain in operation until manually stopped. Include red pilot light to indicate fan operation.
 - 2. Photocell and Temperature Control: Cycle makeup air and exhaust-air fans on and off, based on temperature at hood discharge and opacity of smoke in hood. Interlock fan control with fire-suppression system to operate during fire-suppression-agent release and to remain in operation until manually stopped. Provide air-purge fan and conduit to photocell and reflector to avoid grease accumulation that will negatively affect performance of system.
 - 3. High-Temperature Control: Alarm shall sound and cooking equipment shall shut down before hood discharge temperature rises to actuation temperature of fire-suppression system.

2.5 WET-CHEMICAL FIRE-SUPPRESSION SYSTEM

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Ansul Incorporated; Tyco International.
 - 2. Badger Fire Protection.
 - 3. Kidde Fire Systems.
 - 4. Pyro-Chem; Tyco Fire Suppression & Building Products.
- B. Description: Engineered distribution piping designed for automatic detection and release or manual release of fire-suppression agent by hood operator. Fire-suppression system shall be listed and labeled for complying with NFPA 17A, "Wet Chemical Extinguishing Systems," by a qualified testing agency acceptable to authorities having jurisdiction.
 - 1. Steel Pipe, NPS 2 and Smaller: ASTM A 53/A 53M, Type S, Grade A, Schedule 40, plain ends.
 - 2. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300.
 - 3. Piping, fusible links and release mechanism, tank containing the suppression agent, and controls shall be factory installed. Controls shall be in stainless-steel control cabinet mounted on hood. Furnish manual pull station for wall mounting. Exposed piping shall be covered with chrome-plated aluminum tubing. Exposed fittings shall be chrome plated.
 - 4. Liquid Extinguishing Agent: Noncorrosive, low-pH liquid.
 - 5. Furnish electric-operated gas shutoff valve; see Section 231123 "Facility Natural-Gas Piping."
 - 6. Furnish electric-operated gas shutoff valve with clearly marked open and closed indicator for field installation.
 - 7. Fire-suppression system controls shall be integrated with controls for fans, lights, and fuel supply and located in a single cabinet for each group of hoods immediately adjacent.

8. Wiring shall have color-coded, numbered terminal blocks and grounding bar. Spare terminals for fire alarm, optional wiring to start fan with fire alarm, red pilot light to indicate fan operation, and control switches shall all be factory wired in control cabinet with relays or starters. Include spare terminals for fire alarm, and wiring to start fan with fire alarm.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping systems to verify actual locations of piping connections before equipment installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate equipment layout and installation with adjacent Work, including luminaires, HVAC equipment, plumbing, and fire-suppression system components.
- B. Complete field assembly of hoods where required.
 - 1. Make closed butt and contact joints that do not require filler.
 - 2. Grind field welds on stainless-steel equipment smooth, and polish to match adjacent finish. Comply with welding requirements in "General Hood Fabrication Requirements" Article.
- C. Install hoods and associated services with clearances and access for maintaining, cleaning, and servicing hoods, filters/baffles, grease extractor, and fire-suppression systems according to manufacturer's written instructions and requirements of authorities having jurisdiction.
- D. Make cutouts in hoods where required to run service lines and to make final connections, and seal openings according to UL 1978.
- E. Securely anchor and attach items and accessories to walls, floors, or bases with stainless-steel fasteners unless otherwise indicated.
- F. Install hoods to operate free from vibration.
- G. Install trim strips and similar items requiring fasteners in a bed of sealant. Fasten with stainless-steel fasteners at 48 inches o.c. maximum.
- H. Install sealant in joints between equipment and abutting surfaces with continuous joint backing unless otherwise indicated. Provide airtight, watertight, vermin-proof, sanitary joints.
- I. Install lamps, with maximum recommended wattage, in equipment with integral lighting.

- J. Set initial temperatures, and calibrate sensors.
- K. Set field-adjustable switches.

3.3 CONNECTIONS

- A. Where installing piping adjacent to hoods, allow space for service and maintenance.
- B. Connect ducts according to requirements in Section 233300 "Air Duct Accessories." Install flexible connectors on makeup air supply duct. Weld exhaust-duct connections with continuous liquid tight joint.
- C. Install fire-suppression piping for remote-mounted suppression systems according to NFPA 17A, "Wet Chemical Extinguishing Systems."

3.4 FIELD QUALITY CONTROL

- A. Testing Agency: Engage a qualified testing agency to perform tests and inspections.
- B. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- C. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Test each equipment item for proper operation. Repair or replace equipment that is defective, including units that operate below required capacity or that operate with excessive noise or vibration.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
 - 3. Test water, drain, gas, and liquid-carrying components for leaks. Repair or replace leaking components.
 - 4. Perform hood performance tests required by authorities having jurisdiction.
 - 5. Perform fire-suppression system performance tests required by authorities having jurisdiction.
- D. Commercial-kitchen hoods will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain commercial-kitchen hoods.

END OF SECTION 233813

SECTION 237416.11 - PACKAGED, SMALL-CAPACITY, ROOFTOP AIR-CONDITIONING UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes packaged, small-capacity, rooftop air-conditioning units (RTUs) with the following components and accessories:
 - 1. Casings.
 - 2. Fans.
 - 3. Motors.
 - 4. Rotary heat exchangers.
 - 5. Coils.
 - 6. Refrigerant circuit components.
 - 7. Air filtration.
 - 8. Gas furnaces.
 - 9. Dampers.
 - 10. Electrical power connections.
 - 11. Controls.
 - 12. Accessories.
 - 13. Roof curbs.

1.3 DEFINITIONS

- A. DDC: Direct digital controls.
- B. ECM: Electronically commutated motor.
- C. MERV: Minimum efficiency reporting value.
- D. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system.
- E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, small-capacity, rooftop air-conditioning units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground.

- F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.
- G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus.

1.4 ACTION SUBMITTALS

- A. Product Data: For each RTU.
 - 1. Include manufacturer's technical data.
 - 2. Include rated capacities, dimensions, required clearances, characteristics, and furnished specialties and accessories.

B. Shop Drawings:

- 1. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Include diagrams for power, signal, and control wiring.

1.5 INFORMATIONAL SUBMITTALS

- A. Field quality-control reports.
- B. Sample Warranty: For special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fan Belts: One set for each belt-driven fan.
 - 2. Filters: One set of filters for each unit.

1.8 WARRANTY

A. Special Warranty: Manufacturer agrees to repair or replace components of RTUs that fail in materials or workmanship within specified warranty period.

- 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion.
- 2. Warranty Period for Gas Furnace Heat Exchangers: Manufacturer's standard, but not less than one year for AHU-1 and five years for AHU-2 from date of Substantial Completion.
- 3. Warranty Period for Parts: Manufacturer's standard, but not less than one years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 DESCRIPTION (AHU-1 and AHU-2)

A. AHRI Compliance:

- 1. Comply with AHRI 210/240 for testing and rating energy efficiencies for RTUs.
- 2. Comply with AHRI 340/360 for testing and rating energy efficiencies for RTUs.
- 3. Comply with AHRI 270 for testing and rating sound performance for RTUs.
- 4. Comply with AHRI 1060 for testing and rating performance for air-to-air exchanger.

B. AMCA Compliance:

- 1. Comply with AMCA 11 and bear the AMCA-Certified Ratings Seal for air and sound performance according to AMCA 211 and AMCA 311.
- 2. Damper leakage tested according to AMCA 500-D.
- 3. Operating Limits: Classify according to AMCA 99.

C. ASHRAE Compliance:

- 1. Comply with ASHRAE 15 for refrigeration system safety.
- 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils.
- 3. Comply with applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- D. ASHRAE/IES Compliance: Comply with applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."
- E. NFPA Compliance: Comply with NFPA 90A or NFPA 90B.
- F. UL Compliance: Comply with UL 1995.
- G. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MANUFACTURERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

1. Trane.

2.3 CASINGS

- A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed.
- B. Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked enamel finish. Unit's surface shall be tested 672 hours in a salt spray test in compliance with ASTM B117. Cabinet construction shall allow for all maintenance on one side of the unit. In order to ensure a water and air tight seal, service panels shall have lifting handles and no more than three screws to remove. All exposed vertical panels and top covers in the indoor air section shall be insulated with a 1/2-inch, 1-pound density foil-faced, fire-resistant, permanent, odorless, glass fiber material. The base of the downflow unit shall be insulated with 1/2-inch, 1-pound density foil-faced, closed-cell material. The downflow unit's base pan shall have no penetrations within the perimeter of the curb other than the raised 11/8-inch high supply/return openings to provide an added water integrity precaution, if the condensate drain backs up. The base of the unit shall have provisions for forklift and crane lifting.
- C. Condensate Drain Pans: Fabricated using stainless-steel sheet 0.025 inch thick, a minimum of 2 inches deep, and complying with ASHRAE 62.1 for design and construction of drain pans.
 - 1. Drain Connections: Threaded nipple.
- D. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.4 FANS

- A. Supply-Air Fans: Aluminum or painted-steel wheels, and galvanized- or painted-steel fan scrolls.
 - 1. Belt-Driven Supply-Air Fans: Motors shall be installed on an adjustable fan base resiliently mounted in the casing.
- B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motors.

2.5 MOTORS

- A. Comply with NEMA MG 1, Design B, medium induction motor, unless otherwise indicated.
- B. Comply with IEEE 841 for severe-duty motors.
- C. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

- D. Duty: Continuous duty at ambient temperature of 104 deg Fand at altitude of 3300 feet above sea level.
- E. Capacity and Torque Characteristics: Sufficient to start, accelerate, and operate connected loads at designated speeds, at installed altitude and environment, with indicated operating sequence, and without exceeding nameplate ratings or considering service factor.
- F. Efficiency: Energy efficient, as defined in NEMA MG 1.
- G. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements.
- H. Rotor: Random-wound, squirrel cage.
- I. Bearings: Regreasable, shielded, antifriction ball bearings suitable for radial and thrust loading.
- J. Temperature Rise: Match insulation rating.
- K. Insulation: Class F.
- L. Code Letter Designation:
 - 1. Motors Smaller Than 15 HP: Manufacturer's standard starting characteristic.
- M. Enclosure Material: Cast iron for motor frame sizes 324T and larger; rolled steel for motor frame sizes smaller than 324T.
- N. Motors Used with Variable-Frequency Controllers: Ratings, characteristics, and features coordinated with and approved by controller manufacturer.
 - 1. Windings: Copper magnet wire with moisture-resistant insulation varnish, designed and tested to resist transient spikes, high frequencies, and short-time rise pulses produced by pulse-width-modulated inverters.
 - 2. Energy- and Premium-Efficient Motors: Class B temperature rise; Class F insulation.
 - 3. Inverter-Duty Motors: Class F temperature rise; Class H insulation.
 - 4. Thermal Protection: Comply with NEMA MG 1 requirements for thermally protected motors.
 - 5. Service Factor: 1.15.
 - 6. Efficiency: Premium efficient.

2.6 COILS

- A. Supply-Air Refrigerant Coil:
 - 1. Aluminum-plate fin and seamless internally grooved copper tube in steel casing with equalizing-type vertical distributor.
 - 2. Polymer strip shall prevent all copper coils from contacting steel coil frame or condensate pan.
 - 3. Coil Split: Interlaced.
 - 4. Coated.

2.7 REFRIGERANT CIRCUIT COMPONENTS

- A. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater.
- B. Refrigeration Specialties:
 - 1. Refrigerant: R-410A.
 - 2. Expansion valve with replaceable thermostatic element.
 - 3. Refrigerant filter/dryer.
 - 4. Manual-reset high-pressure safety switch.
 - 5. Automatic-reset low-pressure safety switch.
 - 6. Minimum off-time relay.
 - 7. Automatic-reset compressor motor thermal overload.
 - 8. Brass service valves installed in compressor suction and liquid lines.
 - 9. Low-ambient kit high-pressure sensor.

2.8 AIR FILTRATION

A. Minimum arrestance and MERV according to ASHRAE 52.2.

2.9 GAS FURNACE

- A. Description: Factory assembled, piped, and wired; complying with ANSI Z21.47/CSA 2.3 and NFPA 54.
 - 1. CSA Approval: Designed and certified by and bearing label of CSA.
- B. Burners: Stainless steel.
 - 1. Fuel: Natural gas.
 - 2. Ignition: Electronically controlled electric spark or hot-surface igniter with flame sensor.
- C. Heat-Exchanger and Drain Pan: Stainless steel.
- D. Power Vent: Integral, motorized centrifugal fan interlocked with gas valve.
- E. Gas Valve Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

2.10 DAMPERS

- A. Leakage Rate: Comply with ASHRAE/IES 90.1.
- B. Damper Motor: Modulating with adjustable minimum position.

2.11 ELECTRICAL POWER CONNECTIONS

A. RTU shall have a single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection.

2.12 CONTROLS

A. Control equipment and sequence of operation are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC."

B. Basic Unit Controls:

- 1. Control-voltage transformer.
- 2. Wall-mounted thermostat or sensor with the following features:
 - a. Heat-cool-off switch.
 - b. Fan on-auto switch.
 - c. Fan-speed switch.
 - d. Automatic changeover.
 - e. Adjustable deadband.
 - f. Exposed set point.
 - g. Exposed indication.
 - h. Degree F indication.
 - i. Unoccupied-period-override push button.
 - j. Data entry and access port to input temperature and humidity set points, occupied and unoccupied periods, and output room temperature and humidity, supply-air temperature, operating mode, and status.
- 3. Wall-mounted humidistat or sensor with the following features:
 - a. Exposed set point.
 - b. Exposed indication.
- 4. Unit-Mounted Annunciator Panel for Each Unit:
 - a. Lights to indicate power on, cooling, heating, fan running, filter dirty, and unit alarm or failure.
 - b. DDC controller or programmable timer and interface with HVAC instrumentation and control system.
 - c. Digital display of outdoor-air temperature, supply-air temperature, return-air temperature, economizer damper position, indoor-air quality, and control parameters.

C. DDC Controller:

- 1. Controller shall have volatile-memory backup.
- 2. Safety Control Operation:

- a. Smoke Detectors: Stop fan and close outdoor-air damper if smoke is detected. Provide additional contacts for alarm interface to fire-alarm control panel.
- b. Firestats: Stop fan and close outdoor-air damper if air greater than 130 deg F enters unit. Provide additional contacts for alarm interface to fire-alarm control panel.
- c. Low-Discharge Temperature: Stop fan and close outdoor-air damper if supply-air temperature is less than 40 deg F.
- d. Defrost Control for Condenser Coil: Pressure differential switch to initiate defrost sequence.
- 3. Scheduled Operation: Occupied and unoccupied periods on seven-day clock with a minimum of four programmable periods per day.
- 4. Unoccupied Period:
 - a. Override Operation: Two hours.
- 5. Supply Fan Operation:
 - a. Occupied Periods: Run fan continuously.
 - b. Unoccupied Periods: Cycle fan to maintain setback temperature.
- 6. Refrigerant Circuit Operation:
 - a. Occupied Periods: Cycle or stage compressors to match compressor output to cooling load to maintain room temperature and humidity. Cycle condenser fans to maintain maximum hot-gas pressure. Operate low-ambient control kit to maintain minimum hot-gas pressure.
 - b. Unoccupied Periods: Cycle compressors and condenser fans for heating to maintain setback temperature.
- 7. Gas Furnace Operation:
 - a. Occupied Periods: Modulate burner to maintain room temperature.
 - b. Unoccupied Periods: Cycle burner to maintain setback temperature.
- 8. Fixed Minimum Outdoor-Air Damper Operation:
 - a. Unoccupied Periods: Close the outdoor-air damper.
- 9. Economizer Outdoor-Air Damper Operation:
 - a. Occupied Periods: Provide economizer mode per sequence of operations on drawings.
- 10. Carbon Dioxide Sensor Operation:
 - a. Occupied Periods: Reset minimum outdoor-air ratio per sequence of operations on drawings..
 - b. Unoccupied Periods: Close outdoor-air damper and open return-air damper.

- D. Interface Requirements for HVAC Instrumentation and Control System:
 - 1. Interface relay for scheduled operation.
 - 2. Interface relay to provide indication of fault at the central workstation and diagnostic code storage.
 - 3. Provide BACnet compatible interface for central HVAC control workstation for the following:
 - a. Adjusting set points.
 - b. Monitoring supply fan start, stop, and operation.
 - c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature and humidity.
 - d. Monitoring occupied and unoccupied operations.
 - e. Monitoring constant and variable motor loads.
 - f. Monitoring variable-frequency drive operation.
 - g. Monitoring cooling load.
 - h. Monitoring economizer cycles.
 - i. Monitoring air-distribution static pressure and ventilation air volume.

2.13 ACCESSORIES

- A. Electric heater with integral thermostat maintains minimum 50 deg F temperature in gas burner compartment.
- B. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- C. Low-ambient kit for operation down to 35 deg F.
- D. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- E. Remote potentiometer to adjust minimum economizer damper position.
- F. Return-air bypass damper.
- G. Factory- or field-installed, demand-controlled ventilation.
- H. Safeties:
 - 1. Smoke detector.
 - 2. Condensate overflow switch.
 - 3. Phase-loss protection.
 - 4. High and low pressure control.
 - 5. Gas furnace airflow-proving switch.
- I. Coil guards of painted, galvanized-steel wire.

- J. Hail guards of galvanized steel, painted to match casing.
- K. Concentric diffuser with white louvers and polished aluminum return grilles, insulated diffuser box with mounting flanges, and interior transition.
- L. Door switches to disable heating or reset set point when open.
- M. Outdoor-air intake weather hood.
- N. Oil separator.
- O. Service Lights and Switch: Factory installed in fan section with weatherproof cover. Factory wire lights to a single-point field connection.
- P. Provide curb with side outlets for supply and return ductwork. The curb shall be designed to mate with the downflow unit and provide support and a water tight installation when installed properly. The curb design shall allow field-fabricated rectangular supply/return ductwork to be connected directly to the curb. Curb shall be shipped knocked down for field assembly and shall include wood nailer strips.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs.
- B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation.
- C. Examine roofs for suitable conditions where RTUs will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

A. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure RTUs to structural support with anchor bolts.

3.3 CONNECTIONS

- A. Comply with duct installation requirements specified in other HVAC Sections. Drawings indicate general arrangement of ducts. The following are specific connection requirements:
 - 1. Connect supply ducts to RTUs with flexible duct connectors specified in Section 233300 "Air Duct Accessories."

- B. Install condensate drain, minimum connection size, with trap.
- C. Where installing piping adjacent to RTUs, allow space for service and maintenance.
 - 1. Gas Piping: Comply with applicable requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service.

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Tests and Inspections:
 - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements.
 - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- D. RTU will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Inspect for visible damage to unit casing.
 - 3. Inspect for visible damage to furnace combustion chamber.
 - 4. Inspect for visible damage to compressor, coils, and fans.
 - 5. Inspect internal insulation.
 - 6. Verify that labels are clearly visible.
 - 7. Verify that clearances have been provided for servicing.
 - 8. Verify that controls are connected and operable.
 - 9. Verify that filters are installed.
 - 10. Clean condenser coil and inspect for construction debris.
 - 11. Clean furnace flue and inspect for construction debris.
 - 12. Connect and purge gas line.
 - 13. Remove packing from vibration isolators.
 - 14. Inspect operation of barometric relief dampers.
 - 15. Verify lubrication on fan and motor bearings.

- 16. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.
- 17. Adjust fan belts to proper alignment and tension.
- 18. Start unit according to manufacturer's written instructions.
 - a. Start refrigeration system.
 - b. Do not operate below recommended low-ambient temperature.
 - c. Complete startup sheets and attach copy with Contractor's startup report.
- 19. Inspect and record performance of interlocks and protective devices; verify sequences.
- 20. Operate unit for an initial period as recommended or required by manufacturer.
- 21. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency:
 - a. Measure gas pressure on manifold.
 - b. Inspect operation of power vents.
 - c. Measure combustion-air temperature at inlet to combustion chamber.
 - d. Measure flue-gas temperature at furnace discharge.
 - e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 - f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
- 22. Calibrate thermostats.
- 23. Adjust and inspect high-temperature limits.
- 24. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 25. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature:
 - a. Coil leaving-air, dry- and wet-bulb temperatures.
 - b. Coil entering-air, dry- and wet-bulb temperatures.
 - c. Outdoor-air, dry-bulb temperature.
 - d. Outdoor-air-coil, discharge-air, dry-bulb temperature.
- 26. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
- 27. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve.
 - a. Supply-air volume.
 - b. Return-air volume.
 - c. Relief-air volume.
 - d. Outdoor-air intake volume.
- 28. Simulate maximum cooling demand and inspect the following:
 - a. Compressor refrigerant suction and hot-gas pressures.
 - b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake.

- 29. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 - a. High-temperature limit on gas-fired heat exchanger.
 - b. Low-temperature safety operation.
 - c. Filter high-pressure differential alarm.
 - d. Economizer to minimum outdoor-air changeover.
 - e. Relief-air fan operation.
 - f. Smoke and firestat alarms.
- 30. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters.

3.6 CLEANING AND ADJUSTING

A. After completing system installation and testing, adjusting, and balancing RTU and air-distribution systems, clean filter housings and install new filters.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs.

END OF SECTION 237416.11

SECTION 237423.13 - PACKAGED, DIRECT-FIRED, OUTDOOR, HEATING-ONLY MAKEUP-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes direct-fired heating and ventilating units.

1.3 DEFINITIONS

A. DDC: Direct digital control.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type and configuration of outdoor, direct-fired heating and ventilating unit.
 - 1. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.

1.5 INFORMATIONAL SUBMITTALS

- A. Startup service reports.
- B. Sample Warranty: For manufacturer's special warranty.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For direct-fired heating and ventilating units to include in emergency, operation, and maintenance manuals.

1.7 MAINTENANCE MATERIAL SUBMITTALS

A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.

1. Filters: One set(s) for each unit.

1.8 QUALITY ASSURANCE

- A. Comply with NFPA 70.
- B. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- C. ASHRAE/IES 90.1 Compliance: Applicable requirements in ASHRAE/IES 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

1.9 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace components of direct-fired heating and ventilating units that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period for Heat Exchangers: Manufacturer's standard, but not less than five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Factory-assembled, prewired, self-contained unit consisting of cabinet, supply fan, controls, filters, and direct-fired gas burner to be installed exterior to the building.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - Greenheck.

2.3 UNIT CASINGS

- A. General Fabrication Requirements for Casings:
 - 1. Forming: Form walls, roofs, and floors with at least two breaks at each joint.
 - 2. Casing Joints: Sheet metal screws or pop rivets, factory sealed with water-resistant sealant.

- 3. Factory Finish for Galvanized-Steel Casings: Apply manufacturer's standard primer immediately after cleaning and pretreating.
- 4. Factory Finish for Galvanized-Steel Casings: Immediately after cleaning and pretreating, apply manufacturer's standard two-coat, baked-on enamel finish, consisting of prime coat and thermosetting topcoat.
- 5. Air-Handling-Unit Mounting Frame: Formed galvanized-steel channel or structural channel supports, designed for low deflection, welded with integral lifting lugs.
- 6. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- B. Configuration: Horizontal unit with horizontal discharge for roof-mounting installation.
- C. Cabinet: Galvanized-steel panels, formed to ensure rigidity and supported by galvanized-steel channels or structural channel supports with lifting lugs. Duct flanges at inlet and outlet. Pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs.
- D. Outer Casing: 18 gauge, galvanized (G90) steel meeting ASTM A653 for components that do not receive a painted finish. Base rail is 12 gauge, galvanized (G90) steel..

E. Inner Casing:

- 1. Burner Section Inner Casing: 24 gauge, galvanized (G90) steel except for motor supports which shall be minimum 14 gauge galvanized (G90) steel.
- 2. Internal Insulation: Fibrous-glass duct lining, neoprene coated, comply with ASTM C 1071, Type II, applied on burner and fan sections only.
 - a. Thickness: 1 inch.
 - b. Insulation Adhesive: Comply with ASTM C 916, Type I.
 - c. Density: 1.5 lb/cu. ft..
 - d. Mechanical Fasteners: Galvanized steel suitable for adhesive, mechanical, or welding attachment to casing without damaging liner when applied as recommended by manufacturer and without causing air leakage.

F. Casing Insulation and Adhesive:

- 1. Materials: ASTM C 1071, Type I or Type II.
- 2. Location and Application: Factory applied with adhesive and mechanical fasteners to the internal surface of section panels downstream from, and including, the heating-coil section.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive, mechanical, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have airstream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric, depending on service-air velocity.

3. Location and Application: Encased between outside and inside casing.

G. Inspection and Access Panels and Access Doors:

- 1. Panel and Door Fabrication: Formed and reinforced, single- or double-wall and insulated panels of same materials and thicknesses as casing.
- 2. Inspection and Access Panels:
 - a. Fasteners: Two or more camlock type for panel lift-out operation. Arrangement shall allow panels to be opened against air-pressure differential.
 - b. Gasket: Neoprene, applied around entire perimeters of panel frames.
 - c. Size: Large enough to allow inspection and maintenance of air-handling unit's internal components.

3. Access Doors:

- a. Hinges: A minimum of two ball-bearing hinges or stainless-steel piano hinge and two wedge-lever-type latches, operable from inside and outside. Arrange doors to be opened against air-pressure differential.
- b. Gasket: Neoprene, applied around entire perimeters of panel frames.
- c. Size: At least 18 inches wide by full height of unit casing up to a maximum height of 60 inches.

4. Locations and Applications:

- a. Fan Section: Doors or inspection and access panels.
- b. Access Section: Doors.
- c. Coil Section: Inspection and access panels.
- d. Filter Section: Inspection and access panels large enough to allow periodic removal and installation of filters.

2.4 ACCESSORIES

- A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open.
- B. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss.
- C. Coil guards of painted, galvanized-steel wire.

2.5 OUTDOOR-AIR INTAKE HOOD

- A. Type: Manufacturer's standard hood or louver.
- B. Materials: Match cabinet.
- C. Bird Screen: Comply with requirements in ASHRAE 62.1.

- D. Filter: Aluminum, 2 inches cleanable.
- E. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.6 ROOF CURBS

- A. Materials: Galvanized steel with corrosion-protection coating, watertight gaskets, and factory-installed wood nailer; complying with NRCA standards.
 - 1. Curb Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B.
 - a. Materials: ASTM C 1071, Type I or Type II.
 - b. Thickness: 2 inches.
 - 2. Application: Factory applied with adhesive and mechanical fasteners to the internal surface of curb.
 - a. Liner Adhesive: Comply with ASTM C 916, Type I.
 - b. Mechanical Fasteners: Galvanized steel, suitable for adhesive attachment, mechanical attachment, or welding attachment to duct without damaging liner when applied as recommended by manufacturer and without causing leakage in cabinet.
 - c. Liner materials applied in this location shall have air-stream surface coated with a temperature-resistant coating or faced with a plain or coated fibrous mat or fabric depending on service air velocity.
 - d. Liner Adhesive: Comply with ASTM C 916, Type I.
- B. Curb Height: 14 inches.

2.7 SUPPLY-AIR FAN

- A. Fan Type: Centrifugal, backward curve plenum fan rated according to AMCA 210; statically and dynamically balanced, galvanized steel; mounted on solid-steel shaft with heavy-duty, self-aligning, permanently lubricated ball bearings.
- B. Drive: Direct.
- C. Mounting: Fan wheel, motor, and drives shall be mounted in fan casing with elastomeric isolators.
- D. Fan-Shaft Lubrication Lines: Extended to a location outside the casing.

2.8 AIR FILTERS

- A. Comply with NFPA 90A.
- B. Disposable Panel Filters: Factory-fabricated, flat-panel-type, disposable air filters with holding frames, with a MERV 8 according to ASHRAE 52.2.

- 1. Thickness: 2 inches.
- 2. Frame: Galvanized steel.

2.9 DAMPERS

- A. Outdoor-Air Damper: Galvanized-steel, opposed-blade dampers with vinyl blade seals and stainless-steel jamb seals, having a maximum leakage of 10 cfm/sq. ft. of damper area, at a differential pressure of 2-inch wg.
- B. Damper Operator: Direct coupled, electronic with spring return or fully modulating as required by the control sequence.

2.10 DIRECT-FIRED GAS BURNER

- A. Description: Factory assembled, piped, and wired; and complying with ANSI Z21.47, "Gas-Fired Central Furnaces," and with NFPA 54, "National Fuel Gas Code."
 - 1. CSA Approval: Designed and certified by and bearing label of CSA.
 - 2. Burners: Aluminized steel with stainless-steel inserts.
 - a. Gas Control Valve: Modulating.
 - b. Fuel: Natural gas.
 - c. Minimum Combustion Efficiency: 92 percent.
 - d. Ignition: Electronically controlled electric spark with flame sensor.

B. Safety Controls:

- 1. Vent Flow Verification: Differential pressure switch to verify open vent.
- 2. Control Transformer: 24-V ac.
- 3. High Limit: Thermal switch or fuse to stop burner.
- 4. Gas Train: Regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, electronic-modulating temperature control valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff all in one body.
- 5. Purge-period timer shall automatically delay burner ignition and bypass low-limit control.
- 6. Gas Manifold: Safety switches and controls complying with ANSI standards.
- 7. Airflow Proving Switch: Differential pressure switch senses correct airflow before energizing pilot.
- 8. Automatic-Reset, High-Limit Control Device: Stops burner and closes main gas valve if high-limit temperature is exceeded.
- 9. Safety Lockout Switch: Locks out ignition sequence if burner fails to light after three tries. Controls are reset manually by turning the unit off and on.

2.11 UNIT CONTROL PANEL

A. Factory-wired, fuse-protected control transformer, connection for power supply and field-wired unit to remote control panel.

- B. Control Panel: Surface-mounted remote panel, with engraved plastic cover and the following lights and switches:
 - 1. On-off-auto fan switch.
 - 2. Heat-vent-off switch.
 - 3. Supply-fan operation indicating light.
 - 4. Heating operation indicating light.
 - 5. Thermostat.
 - 6. Damper position potentiometer.
 - 7. Dirty-filter indicating light operated by unit-mounted differential pressure switch.
 - 8. Safety-lockout indicating light.
 - 9. Enclosure: NEMA 250, Type 4.

2.12 CONTROLS

- A. Comply with requirements in Section 230923 "Direct Digital Control (DDC) System for HVAC" for control equipment and sequence of operation.
- B. Control Devices:
 - 1. Static-Pressure Transmitter: Nondirectional sensor with suitable range for expected input, and temperature compensated.
 - 2. Fire-Protection Thermostats: Fixed or adjustable settings to operate at not less than 75 deg F above normal maximum operating temperature.
 - 3. Ionization-Type Smoke Detectors: 24-V dc, nominal; self-restoring; plug-in arrangement; integral visual-indicating light; sensitivity that can be tested and adjusted in place after installation; integral addressable module; remote controllability; responsive to both visible and invisible products of combustion; self-compensating for changes in environmental conditions.
- C. Fan Control: Interlock fan to start with kitchen exhaust fan to which this heating and ventilating unit is associated for makeup air.
- D. Outdoor-Air Damper Control, 100 Percent Outdoor-Air Units: Outdoor-air damper shall open when supply fan starts, and close when fan stops.
- E. Temperature Control: Operates gas valve to maintain supply-air temperature.
 - 1. Operates gas valve to maintain discharge-air temperature with factory-mounted sensor in blower outlet.
 - 2. Burner Control: Turn down ratio shall be minimum 25:1.
- F. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor and display status and alarms of heating and ventilating unit.
 - 1. Monitor only: The DDC shall monitor the status and functions of the unit through a factory-installed controller. Control commands will be provided by terminal style signals external to the unit.

2.13 MOTORS

A. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of piping and electrical connections before equipment installation.
- C. Verify cleanliness of airflow path to include inner-casing surfaces, filters, coils, turning vanes, fan wheels, and other components.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Unit Support: Install heating and ventilating unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.
- B. Install gas-fired units according to the Virginia Fuel Gas Code.
- C. Install controls and equipment shipped by manufacturer for field installation with direct-fired heating and ventilating units.
- D. Roof Curb: Install on roof structure or concrete base, level and secure, according to AHRI Guideline B. Install units on curbs and coordinate roof penetrations and flashing with roof construction. Secure units to upper curb rail, and secure curb base to roof framing or concrete base with anchor bolts.
- E. Unit Support: Install unit level on structural curbs. Coordinate wall penetrations and flashing with wall construction. Secure units to structural support with anchor bolts.

3.3 CONNECTIONS

- A. Drawings indicate general arrangement of piping, fittings, and specialties.
 - 1. Gas Piping: Comply with requirements in Section 231123 "Facility Natural-Gas Piping." Connect gas piping with shutoff valve and union, and with sufficient clearance for burner removal and service. Make final connections of gas piping to unit with corrugated,

stainless-steel tubing flexible connectors complying with ANSI LC 1/CSA 6.26 equipment connections.

- B. Drain: Comply with requirements in Section 221316 "Sanitary Waste and Vent Piping" for traps and accessories on piping connections to condensate drain pans under condensing heat exchangers. Where installing piping adjacent to heating and ventilating units, allow space for service and maintenance.
- C. Duct Connections: Connect supply ducts to direct-fired heating and ventilating units with flexible duct connectors. Comply with requirements in Section 233300 "Air Duct Accessories" for flexible duct connectors.
- D. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- E. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage a factory-authorized service representative to test and inspect components, assemblies, and equipment installations, including connections.
- B. Perform tests and inspections with the assistance of a factory-authorized service representative.
- C. Units will be considered defective if they do not pass tests and inspections.
- D. Prepare test and inspection reports.

3.5 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
- B. Complete installation and startup checks according to manufacturer's written instructions and perform the following:
 - 1. Inspect for visible damage to burner combustion chamber.
 - 2. Inspect casing insulation for integrity, moisture content, and adhesion.
 - 3. Verify that clearances have been provided for servicing.
 - 4. Verify that controls are connected and operable.
 - 5. Verify that filters are installed.
 - 6. Purge gas line.
 - 7. Inspect and adjust vibration isolators.
 - 8. Verify bearing lubrication.
 - 9. Inspect fan-wheel rotation for movement in correct direction without vibration and binding.

- C. Start unit according to manufacturer's written instructions.
 - 1. Complete startup sheets and attach copy with Contractor's startup report.
 - 2. Inspect and record performance of interlocks and protective devices; verify sequences.
 - 3. Operate unit for run-in period recommended by manufacturer.
 - 4. Perform the following operations for both minimum and maximum firing, and adjust burner for peak efficiency:
 - a. Measure gas pressure at manifold.
 - b. Measure combustion-air temperature at inlet to combustion chamber.
 - c. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 - 5. Calibrate thermostats.
 - 6. Adjust and inspect high-temperature limits.
 - 7. Inspect dampers, if any, for proper stroke and interlock with return-air dampers.
 - 8. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown.
 - 9. Measure and record airflow. Plot fan volumes on fan curve.
 - 10. Verify operation of remote panel, including pilot-operation and failure modes. Inspect the following:
 - a. High-limit heat.
 - b. Alarms.
 - 11. After startup and performance testing, change filters, verify bearing lubrication, and adjust belt tension.
 - 12. Verify outdoor-air damper operation.

3.6 ADJUSTING

- A. Adjust initial temperature set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.7 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain heating and ventilating units.

END OF SECTION 237423.13

SECTION 237433 - DEDICATED OUTDOOR-AIR UNITS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes factory-packaged units capable of supplying up to 100 percent outdoor air and providing cooling and heating.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product. Include rated capacities, operating characteristics, and furnished specialties and accessories.

1.4 INFORMATIONAL SUBMITTALS

- A. Startup service reports.
- B. Sample Warranty: For special warranty.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For units to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters: One set for each unit.

1.7 WARRANTY

A. Special Warranty: Manufacturer agrees to replace components of units that fail in materials or workmanship within specified warranty period.

- 1. Warranty Period for Compressors: Five years from date of Substantial Completion.
- 2. Warranty Period for Heat Exchangers: Five years from date of Substantial Completion.
- 3. Warranty Period for Parts: One years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Trane.

2.2 PERFORMANCE REQUIREMENTS

- A. General Fabrication Requirements: Comply with requirements in ASHRAE 62.1, Section 5 "Systems and Equipment," and Section 7 "Construction and System Start-up."
- B. Wind-Restraint Performance:
 - 1. Minimum 10 lb/sq. ft multiplied by the maximum area of unit projected on a vertical plane that is normal to the wind direction and 45 degrees either side of normal.
- C. Cabinet Thermal Performance:
 - 1. Maximum Overall U-Value: Comply with requirements in ASHRAE/IESNA 90.1.
 - 2. Include effects of metal-to-metal contact and thermal bridges in the calculations.
- D. Cabinet Surface Condensation:
 - 1. Cabinet shall have additional insulation and vapor seals if required to prevent condensation on the interior and exterior of the cabinet.
 - 2. Portions of cabinet located downstream from the cooling coil shall have a thermal break at each thermal bridge between the exterior and interior casing to prevent condensation from occurring on the interior and exterior surfaces. The thermal break shall not compromise the structural integrity of the cabinet.
- E. Maximum Cabinet Leakage: 2 percent of the total supply-air flow at a pressure rating equal to the fan shut-off pressure.
- F. Electrical components, devices, and accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.3 CABINET

A. Construction: Unit casing shall be constructed of zinc coated, heavy gauge, galvanized steel. Exterior surfaces shall be cleaned, phosphatized, and finished with a weather-resistant baked

enamel finish. Unit's surface shall be tested 1000 hours in a salt spray test in compliance with ASTM B45. Unit shall have a 2 inch thick Antimicrobial Insulation. All insulation edges shall be either captured or sealed. The unit's base pan shall have no penetrations within the perimeter of the curb other than the raised downflow supply/return openings to provide an added water integrity precaution, if the condensate drain backs up.Lifting and Handling Provisions: Factory-installed shipping skids and lifting lugs.

- B. Base Rails: Galvanized-steel rails for mounting on roof curb or pad as indicated.
- C. Access for Inspection, Cleaning, and Maintenance: Comply with requirements in ASHRAE 62.1.
 - 1. Service Doors: Hinged access doors with gaskets. Material and construction of doors shall match material and construction of cabinet in which doors are installed.
- D. Roof: Standing seam or membrane; sloped to drain water. The top cover shall be one piece construction or, where seams exist, it shall be double-hemmed and gasket-sealed. The ribbed top adds extra strength and enhances water removal from unit top.
- E. Floor: Reinforced, metal surface; reinforced to limit deflection when walked on by service personnel. Insulation shall be below metal walking surface.
- F. Condensate Drain Pans:
 - 1. Shape: Rectangular, with 2 percent slope in at least two planes to direct water toward drain connection.
 - 2. Size: Large enough to collect condensate from cooling coils including coil piping connections, coil headers, and return bends.
 - a. Length: Extend drain pan downstream from leaving face to comply with ASHRAE 62.1.
 - b. Depth: A minimum of 2 inches.
 - 3. Configuration: Single wall.
 - 4. Material: Stainless-steel sheet.
 - 5. Drain Connection:
 - a. Located on one or both ends of pan, at lowest point of pan.
 - b. Terminated with threaded nipple.
 - c. Minimum Connection Size: NPS 1.
 - 6. Units with stacked coils shall have an intermediate drain pan to collect condensate from top coil.
- G. Surfaces in Contact with Airstream: Comply with requirements in ASHRAE 62.1 for resistance to mold and erosion.
- H. Roof Curb: Full-perimeter curb of sheet metal, minimum 14 inches high, with wood nailer, neoprene sealing strip, and welded Z-bar flashing.

1. Comply with requirements in "The NRCA Roofing Manual."

2.4 SUPPLY AND EXHAUST FAN

- A. Supply fan motor shall be direct drive type with factory installed variable frequency drive. All motors shall be thermally protected..
 - 1. Fan Wheel Material: Aluminum; attached directly to motor shaft.
 - 2. Fan Wheel Drive and Arrangement: Direct drive, AMCA Arrangement 4.
 - 3. Fan panel and frame Material: Powder-coated steel, stainless steel, or aluminum.
 - 4. Fan Enclosure: Easily removable enclosure around rotating parts.
 - 5. Fan Balance: Precision balance fan below 0.08 inch/s at design speed with filter in.

B. Motors:

- 1. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
- 2. Enclosure: Open drip proof.
- 3. Efficiency: Premium efficient.
- 4. Service Factor: 1.15.
- C. Mounting: Fan wheel, motor, and drives shall be mounted to fan casing with elastomeric isolators.

2.5 COOLING COILS

- A. Capacity Ratings: Comply with ASHRAE 33 and ARI 410.
- B. Coil Casing Material: Manufacturer's standard material.
- C. Tube Material: Copper.
- D. Tube Header Material: Copper.
- E. Fin Material: Aluminum.
- F. Fin and Tube Joints: Mechanical bond.
- G. Leak Test: Coils shall be leak tested with air underwater.
- H. Refrigerant Coil Suction and Distributor Header Materials: Seamless copper tube with brazed joints.

2.6 REFRIGERATION SYSTEM

A. Comply with requirements in ASHRAE 15, "Safety Standard for Refrigeration Systems."

- B. Refrigerant Charge: Factory charged with refrigerant and filled with oil.
- C. Compressors: Scroll compressors with integral vibration isolators, internal overcurrent and overtemperature protection, internal pressure relief, and crankcase heater.
- D. Refrigerant: R-410A.
 - 1. Classified as Safety Group A1 according to ASHRAE 34.
 - 2. Provide unit with operating charge of refrigerant.

E. Refrigeration System Specialties:

- 1. Expansion valve with replaceable thermostatic element.
- 2. Refrigerant dryer.
- 3. High-pressure switch.
- 4. Low-pressure switch.
- 5. Thermostat for coil freeze-up protection during low ambient temperature operation or loss of air.
- 6. Brass service valves installed in discharge and liquid lines.

F. Capacity Control:

- 1. Hot-gas bypass refrigerant control for capacity control with continuous dehumidification on a single compressor.
- G. Refrigerant condenser and reheat condenser coils:
 - 1. Capacity Ratings: Complying with ASHRAE 33 and ARI 410.
 - 2. Tube Material: Copper.
 - 3. Fin Material: Aluminum.
 - 4. Fin and Tube Joint: Mechanical bond.
 - 5. Leak Test: Coils shall be leak tested with air underwater.
 - 6. Coating: Phenolic epoxy corrosion-protection coating after assembly.

H. Condenser Fan Assembly:

- 1. Fans: Direct-drive propeller type with statically and dynamically balanced fan blades.
- 2. Fan Motors:
 - a. Comply with NEMA designation, temperature rating, service factor, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - b. Motor Enclosure: Totally enclosed non-ventilating (TENV) or totally enclosed air over (TEAO) enclosure.
 - c. Motor Bearings: Permanently lubricated bearings.
 - d. Built-in overcurrent and thermal-overload protection.
 - e. Efficiency: Premium efficient.
- 3. Fan Safety Guards: Steel with corrosion-resistant coating.

I. Safety Controls:

- 1. Compressor motor and condenser coil fan motor low ambient lockout.
- 2. Overcurrent protection for compressor motor.

2.7 INDIRECT-FIRED GAS FURNACE HEATING

A. Furnace Assembly:

- 1. Factory assembled, piped, and wired.
- 2. Comply with requirements in NFPA 54, "National Fuel Gas Code," and ANSI Z21.47, "Gas-Fired Central Furnaces."
- 3. AGA Approval: Designed and certified by and bearing label of AGA.

B. Burners:

- 1. Heat-Exchanger Material: Stainless steel with a minimum thermal efficiency of 80 percent.
- 2. Fuel: Natural gas.
- 3. Ignition: Electronically controlled electric spark with flame sensor.
- C. Heat-Exchanger Drain Pan Material: Stainless steel.
- D. Venting: Power vent with integral, motorized centrifugal fan interlocked with gas valve.

E. Safety Controls:

- 1. Gas Control Valve: Electronic modulating.
- 2. Gas Train: Single-body, regulated, redundant, 24-V ac gas valve assembly containing pilot solenoid valve, pilot filter, pressure regulator, pilot shutoff, and manual shutoff.

2.8 HEAT WHEEL

A. Casing:

- 1. Steel with standard factory-painted finish.
- 2. Integral purge section limiting carryover of exhaust air to between 0.05 percent at 1.6-inch wg and 0.20 percent at 4-inch wg differential pressure.
- 3. Casing seals on periphery of rotor and on duct divider and purge section.
- 4. Support vertical rotors on grease-lubricated ball bearings having extended grease fittings or permanently lubricated bearings. Support horizontal rotors on tapered roller bearing.
- B. Rotor: Aluminum segmented wheel strengthened with radial spokes, with nontoxic, noncorrosive, silica-gel desiccant coating.
- C. Drive: Fractional horsepower motor and gear reducer and self-adjusting multilink belt around outside of rotor.

- 1. Comply with NEMA designation, temperature rating, service factor, enclosure type, and efficiency requirements for motors specified in Section 230513 "Common Motor Requirements for HVAC Equipment."
- 2. Motor Sizes: Minimum size as indicated. If not indicated, large enough so driven load will not require motor to operate in service factor range above 1.0.

D. Controls:

- 1. Starting relay, factory mounted and wired, and manual motor starter for field wiring.
- 2. Pilot-Light Indicator: Display rotor rotation.

E. Disposable Panel Filters:

- 1. Comply with NFPA 90A.
- 2. Filter Holding Frames: Arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or lift out from access plenum.
- 3. Factory-fabricated, viscous-coated, flat-panel type.
- 4. Thickness: 2 inches.
- 5. Frame: Galvanized steel with metal grid on outlet side, steel rod grid on inlet side, hinged, and with pull and retaining handles.

2.9 OUTDOOR-AIR INTAKE HOOD

- A. Type: Manufacturer's standard hood or louver.
- B. Materials: Match cabinet.
- C. Bird Screen: Comply with requirements in ASHRAE 62.1.
- D. Configuration: Designed to inhibit wind-driven rain and snow from entering unit.

2.10 FILTERS

- A. Cleanable Filters: 2-inch-thick, cleanable metal mesh.
- B. Disposable Panel Filters:
 - 1. Comply with NFPA 90A.
 - 2. Factory-fabricated, viscous-coated, flat-panel type.
 - 3. Thickness: 2 inches.
 - 4. Minimum MERV: 8, according to ASHRAE 52.2.

C. Mounting Frames:

- 1. Panel filters arranged for flat or angular orientation, with access doors on both sides of unit. Filters shall be removable from one side or from access plenum.
- 2. Extended surface filters arranged for flat orientation, removable from access plenum.

3. Galvanized or stainless steel with gaskets and fasteners, suitable for bolting together into built-up filter banks.

2.11 ELECTRICAL POWER CONNECTIONS

- A. General Electrical Power Connection Requirements: Factory-installed and -wired switches, motor controllers, transformers, and other necessary electrical devices shall provide a single-point field power connection to unit.
- B. Enclosure: NEMA 250, Type 4, mounted in unit with hinged access door in unit cabinet having a lock and key or padlock and key,
- C. Wiring: Numbered and color-coded to match wiring diagram.
- D. Wiring Location: Install factory wiring outside an enclosure in a raceway.
- E. Power Interface: Field power interface shall be to NEMA KS 1, heavy-duty, nonfused disconnect switch.
- F. Factory Wiring: Branch power circuit to each motor and to controls with one of the following disconnecting means:
 - 1. NEMA KS 1, heavy-duty, fusible switch with rejection-type fuse clips rated for fuses. Select and size fuses to provide Type 2 protection according to IEC 60947-4-1.
 - 2. NEMA KS 1, heavy-duty, nonfusible switch.
 - 3. UL 489, motor-circuit protector (circuit breaker) with field-adjustable, short-circuit trip coordinated with motor locked-rotor amperes.
- G. Factory-Mounted, Overcurrent-Protection Service: For each motor.
- H. Transformer: Factory mounted with primary and secondary fuses and sized with enough capacity to operate electrical load plus spare capacity.
- I. Controls: Factory wire unit-mounted controls where indicated.
- J. Lights: Factory wire unit-mounted lights.
- K. Receptacle: Factory wire unit-mounted, ground fault interrupt (GFI) duplex receptacle.
- L. Control Relays: Auxiliary and adjustable time-delay relays.

2.12 CONTROLS

- A. Control equipment and sequence of operation are specified in Section 230923 "Direct Digital Control (DDC) System for HVAC".
- B. Control Wiring: Factory wire connection for controls' power supply.

C. Control Devices: Sensors, transmitters, relays, switches, detectors, operators, actuators, and valves shall be manufacturer's standard items to accomplish indicated control functions.

D. Unit-Mounted Status Panel:

- 1. Cooling/Off/Heating Controls: Control operational mode.
- 2. Damper Position: Indicate position of outdoor-air dampers in terms of percentage of outdoor air.
- 3. Status Lights:
 - a. Filter dirty.
 - b. Fan operating.
 - c. Cooling operating.
 - d. Heating operating.
 - e. Smoke alarm.
 - f. General alarm.

4. Digital Numeric Display:

- a. Outdoor airflow.
- b. Supply airflow.
- c. Outdoor dry-bulb temperature.
- d. Outdoor dew point temperature.
- e. Space temperature.
- f. Supply temperature.

E. Control Dampers:

- 1. Damper Location: Factory installed inside unit for ease of blade axle and bushing service. Arrange dampers located in a mixing box to achieve convergent airflow to minimize stratification.
- 2. Damper Leakage: Comply with requirements in AMCA 500-D. Leakage shall not exceed 6.5 cfm per sq. ft. at a static-pressure differential of 4.0 inches water column when a torque of 5 inch pounds per sq. ft. is applied to the damper jackshaft.
- 3. Damper Rating: Rated for close-off pressure equal to the fan shutoff pressure.
- 4. Damper Label: Bear the AMCA seal for both air leakage and performance.
- 5. Blade Configuration: Unless otherwise indicated, use parallel blade configuration for two-position control and equipment isolation service and use modulating control when mixing two airstreams. For other applications, use an opposed-blade configuration.
- 6. Damper Frame Material: galvanized steel.
- 7. Blade Type: Single-thickness metal reinforced with multiple V-grooves or hollow-shaped airfoil.
- 8. Blade Material: Galvanized steel.
- 9. Maximum Blade Width: 6 inches.
- 10. Maximum Blade Length: 48 inches.
- 11. Blade Seals: Replaceable, continuous perimeter vinyl seals and jambs with stainless-steel compression-type seals.
- 12. Bearings: Thrust bearings for vertical blade axles.
- 13. Airflow Measurement:

- a. Monitoring System: Complete and functioning system of airflow monitoring as an integral part of the damper assembly where indicated.
- b. Remote Monitoring Signal: 0-10 volt or 4-20 mA scaled signal.
- c. Accuracy of flow measurement: Within 5 percent of the actual flow rate between the range of the scheduled minimum and maximum airflow. For units with a large range between minimum and maximum airflow, configure the damper sections and flow measurement assembly as necessary to comply with accuracy.
- d. Straightening Device: Integral to the flow measurement assembly if required to achieve the specified accuracy as installed.
- e. Flow measuring device: Suitable for operation in untreated and unfiltered outdoor air. If necessary, include temperature and altitude compensation and correction to maintain the accuracy.

F. Damper Operators:

- 1. Factory-installed electric operator for each damper assembly with one operator for each damper assembly mounted to the damper frame.
- 2. Operator capable of shutoff against fan pressure and able to operate the damper with sufficient reserve power to achieve smooth modulating action and proper speed of response at the velocity and pressure conditions to which the damper is subjected.
- 3. Maximum Operating Time: Open or close damper 90 degrees in 60 seconds.
- 4. Adjustable Stops: For both maximum and minimum positions.
- 5. Position Indicator and Graduated Scale: Factory installed on each actuator with words "OPEN" and "CLOSED," or similar identification, at travel limits.
- 6. Spring-return operator to fail-safe; either closed or open as required by application.
- 7. Operator Type: Direct coupled, designed for minimum 60,000 full-stroke cycles at rated torque.
- 8. Position feedback Signal: For remote monitoring of damper position.
- 9. Coupling: V-bolt and V-shaped, toothed cradle.
- 10. Circuitry: Electronic overload or digital rotation-sensing circuitry.

G. Furnace Controls:

- 1. Factory-mounted sensor in supply outlet with sensor adjustment located in control panel to modulate gas furnace burner to maintain supply air temperature.
- 2. Electromechanical or Electronic Burner Control: 20 to 100 percent modulation of the firing rate; 10 to 100 percent with dual-furnace units.
- H. Integral Smoke Alarm: Smoke detector installed in supply air.
- I. DDC Temperature Control: Standalone control module for link between unit controls and DDC temperature-control system. Control module shall be compatible with control system specified in Section 230923 "Direct Digital Control (DDC) System for HVAC." Links shall include the following:
 - 1. Start/stop interface relay, and relay to notify DDC temperature-control system alarm condition
 - 2. Hardware interface or additional sensors for the following:
 - a. Discharge-air temperature.
 - b. Refrigeration system operating.

- c. Furnace operating.
- d. Constant and variable motor loads.
- e. Variable-frequency-controller operation.
- f. Cooling load.
- g. Economizer cycles.
- h. Air-distribution static pressure and ventilation-air volumes.
- J. Interface with DDC System for HVAC: Factory-installed hardware and software to enable the DDC system for HVAC to monitor, control, and display unit status and alarms.
 - 1. Hardwired Points:
 - a. Monitoring: On-off status, common trouble alarm.
 - b. Control: On-off operation, supply temperature set-point adjustment.
 - 2. ASHRAE 135 (BACnet) communication interface with the DDC system for HVAC shall enable the DDC system for HVAC operator to remotely control and monitor the unit from an operator workstation. Control features and monitoring points displayed locally at unit control panel shall be available through the DDC system for HVAC.

2.13 ACCESSORIES

- A. Service Lights and Switch: Factory installed in fan sections with weatherproof cover. Factory wire lights to a single-point field connection.
- B. Duplex Receptacle: Factory mounted on the control side of the unit, with 20 amp 120 V GFI duplex receptacle and weatherproof cover.
- C. Duct smoke detector.
- D. APR Valve:
 - 1. Service pressure ports, and refrigerant line filter driers are factory-installed as standard. An area shall be provided for replacement suction line driers. Capacity is controlled by Adiabatic Proportional Regulator (APR) valve installed on the lead circuit.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for piping, ducts, and electrical systems to verify actual locations of connections before equipment installation.

- C. Examine roof curbs and equipment supports for suitable conditions where units will be installed.
- D. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Comply with manufacturer's rigging and installation instructions for unloading units and moving to final locations.
- B. Curb Support: Install roof curb on roof structure according to "The NRCA Roofing Manual."
 - 1. Install and secure units on curbs and coordinate roof penetrations and flashing with roof construction.
 - 2. Coordinate size, installation, and structural capacity of roof curbs, equipment supports, and roof penetrations.
 - 3. Coordinate size, location, and installation of unit manufacturer's roof curbs and equipment supports with roof Installer.
- C. Restrained Curb Support: Install restrained vibration isolation roof-curb rails on roof structure according to "The NRCA Roofing Manual."
- D. Install wall- and duct-mounted sensors furnished by manufacturer for field installation. Install control wiring and make final connections to control devices and unit control panel.
- E. Comply with requirements for gas-fired furnace installation in NFPA 54, "National Fuel Gas Code."
- F. Install separate devices furnished by manufacturer and not factory installed.
- G. Install new filters at completion of equipment installation and before testing, adjusting, and balancing.
- H. Install drain pipes from unit drain pans.
 - 1. Drain Piping: Drawn-temper copper water tubing complying with ASTM B 88, Type L, with soldered joints.
 - 2. Drain Piping: Schedule 40 PVC pipe complying with ASTM D 1785, with solvent-welded fittings.
 - 3. Pipe Size: Same size as condensate drain pan connection.

3.3 CONNECTIONS

- A. Where installing piping adjacent to units, allow space for service and maintenance.
- B. Gas Piping Connections:
 - 1. Comply with requirements in Section 231123 "Facility Natural-Gas Piping."

- 2. Connect gas piping to furnace, full size of gas train inlet, and connect with union, pressure regulator, and shutoff valve with sufficient clearance for burner removal and service.
- 3. Install AGA-approved flexible connectors.

C. Duct Connections:

- 1. Comply with requirements in Section 233113 "Metal Ducts."
- 2. Drawings indicate the general arrangement of ducts.
- 3. Connect ducts to units with flexible duct connectors. Comply with requirements for flexible duct connectors in Section 233300 "Air Duct Accessories."
- D. Electrical Connections: Comply with requirements for power wiring, switches, and motor controls in electrical Sections.
 - 1. Install electrical devices furnished by unit manufacturer but not factory mounted.

3.4 STARTUP SERVICE

- A. Engage a factory-authorized service representative to perform startup service.
 - 1. Complete installation and startup checks according to manufacturer's written instructions.
 - 2. Inspect units for visible damage to furnace combustion chamber.
 - 3. Perform the following operations for both minimum and maximum firing and adjust burner for peak efficiency:
 - a. Measure gas pressure at manifold.
 - b. Measure combustion-air temperature at inlet to combustion chamber.
 - c. Measure flue-gas temperature at furnace discharge.
 - d. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration.
 - e. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air.
 - 4. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following:
 - a. High-limit heat exchanger.
 - b. Alarms.
 - 5. Inspect units for visible damage to refrigerant compressor, condenser and evaporator coils, and fans.
 - 6. Start refrigeration system when outdoor-air temperature is within normal operating limits and measure and record the following:
 - a. Cooling coil leaving-air, dry- and wet-bulb temperatures.
 - b. Cooling coil entering-air, dry- and wet-bulb temperatures.
 - c. Condenser coil entering-air dry-bulb temperature.
 - d. Condenser coil leaving-air dry-bulb temperature.

- 7. Simulate maximum cooling demand and inspect the following:
 - a. Compressor refrigerant suction and hot-gas pressures.
 - b. Short-circuiting of air through outside coil or from outside coil to outdoor-air intake.
- 8. Inspect casing insulation for integrity, moisture content, and adhesion.
- 9. Verify that clearances have been provided for servicing.
- 10. Verify that controls are connected and operable.
- 11. Verify that filters are installed.
- 12. Clean coils and inspect for construction debris.
- 13. Clean furnace flue and inspect for construction debris.
- 14. Inspect operation of power vents.
- 15. Purge gas line.
- 16. Inspect and adjust vibration isolators and seismic restraints.
- 17. Verify bearing lubrication.
- 18. Clean fans and inspect fan-wheel rotation for movement in correct direction without vibration and binding.
- 19. Start unit.
- 20. Inspect and record performance of interlocks and protective devices including response to smoke detectors by fan controls and fire alarm.
- 21. Operate unit for run-in period.
- 22. Calibrate controls.
- 23. Adjust and inspect high-temperature limits.
- 24. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers.
- 25. Verify operational sequence of controls.
- 26. Measure and record the following airflows. Plot fan volumes on fan curve.
 - a. Supply-air volume.
 - b. Return-air flow.
 - c. Outdoor-air flow.
- B. After startup, change filters and verify bearing lubrication.
- C. Remove and replace components that do not properly operate and repeat startup procedures as specified above.
- D. Prepare written report of the results of startup services.

3.5 ADJUSTING

- A. Adjust initial temperature and humidity set points.
- B. Set field-adjustable switches and circuit-breaker trip ranges as indicated.

3.6 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain units.

END OF SECTION 237433

SECTION 238129 - VARIABLE-REFRIGERANT-FLOW HVAC SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes complete VRF HVAC system(s) including, but not limited to the following components to make a complete operating system(s) according to requirements indicated:
 - 1. Indoor, concealed, ceiling-mounted units for ducting.
 - 2. Indoor, exposed, wall-mounted units.
 - 3. Indoor, recessed, ceiling-mounted units.
 - 4. Outdoor, air-source heat recovery units.
 - 5. Heat recovery control units.
 - 6. System controls.
 - 7. System refrigerant and oil.
 - 8. System condensate drain piping.
 - 9. System refrigerant piping.
 - 10. Metal hangers and supports.
 - 11. Metal framing systems.
 - 12. Fastener systems.
 - 13. Pipe stands.
 - 14. Miscellaneous support materials.
 - 15. Piping and tubing insulation.
 - 16. System control cable and raceways.

1.3 DEFINITIONS

- A. Air-Conditioning System Operation: System capable of operation with all zones in cooling only.
- B. Heat-Pump System Operation: System capable of operation with all zones in either heating or cooling, but not with simultaneous heating and cooling zones that transfer heat between zones.
- C. Heat Recovery System Operation: System capable of operation with simultaneous heating and cooling zones that transfer heat between zones.
- D. HRCU: Heat Recovery Control Unit. HRCUs are used in heat recovery VRF HVAC systems to manage and control refrigerant between indoor units to provide simultaneous heating and cooling zones. "Heat Recovery Control Unit" is the term used by ASHRAE for what different

- manufacturers term as branch circuit controller, branch selector box, changeover box, flow selector unit, mode change unit, and other such terms.
- E. Low Voltage: As defined in NFPA 70 for circuits and equipment operating at less than 50 V or for remote-control, signaling power-limited circuits.
- F. Plenum: A space forming part of the air distribution system to which one or more air ducts are connected. An air duct is a passageway, other than a plenum, for transporting air to or from heating, ventilating, or air-conditioning equipment.
- G. Three-Pipe System Design: One high pressure refrigerant vapor line, one low pressure refrigerant vapor line, and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One liquid line and refrigerant vapor line connect HRCUs to associated indoor units.
- H. Two-Pipe System Design: One refrigerant vapor line and one refrigerant liquid line connect a single outdoor unit or multiple manifold outdoor units in a single system to associated system HRCUs. One refrigerant liquid line and refrigerant vapor line connect HRCUs to associated indoor units. HRCUs used in two pipe systems act as an intermediate heat exchanger and include diverting valves and gas/liquid separators to move high and low pressure refrigerant between indoor units.
- I. VRF: Variable refrigerant flow.

1.4 PREINSTALLATION MEETINGS

A. Preinstallation Conference: Conference to be held prior to construction, to be held at an agreeable location for the Manufacturer, Installer, and Engineer.

1.5 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for indoor, outdoor units, and for HRCUs.
 - 2. Include rated capacities, operating characteristics, electrical characteristics, and furnished specialties and accessories.
 - 3. Include operating performance at design conditions and at extreme maximum and minimum outdoor ambient conditions.
 - 4. Include description of system controllers, dimensions, features, control interfaces and connections, power requirements, and connections.
 - 5. Include system operating sequence of operation in narrative form for each unique indoorand outdoor-unit and HRCU control.
 - 6. Include description of control software features.
 - 7. Include total refrigerant required and a comprehensive breakdown of refrigerant required by each system installed.
 - 8. Include refrigerant type and data sheets showing compliance with requirements indicated.
 - 9. Indicate location and type of service access.

- B. Shop Drawings: For VRF HVAC systems.
 - 1. Include plans, elevations, sections, and attachment details.
 - 2. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
 - 3. Vibration Isolation Base Details: Detail fabrication including anchorages and attachments to structure and to supported equipment. Include adjustable motor bases, rails, and frames for equipment mounting.
 - 4. Include diagrams and details of refrigerant piping and tubing showing installation requirements for manufacturer-furnished divided flow fittings.
 - 5. Include diagrams for power, signal, and control wiring.

1.6 INFORMATIONAL SUBMITTALS

- A. Coordination Drawings: Plans, elevations, sections, and details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved:
 - 1. Suspended ceiling components.
 - 2. Structural floors, roofs and associated members to which equipment, piping, ductwork, cables, and conduit will be attached.
 - 3. Size and location of initial access modules for acoustical tile.
 - 4. Wall-mounted controllers located in finished space showing relationship to light switches, fire-alarm devices, and other installed devices.
 - 5. Size and location of access doors and panels installed behind walls and inaccessible ceilings for products installed behind walls and requiring access.
 - 6. Items penetrating finished ceiling including the following:
 - a. Luminaires.
 - b. Air outlets and inlets.
 - c. Speakers.
 - d. Sprinklers.
 - e. Service access panels.

B. Qualification Data:

- 1. For Installer: Certificate from VRF HVAC system manufacturer certifying that Installer has successfully completed prerequisite training administered by manufacturer for proper installation of systems, including but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
 - a. Retain copies of Installer certificates on-site and make available on request.
- 2. For VRF HVAC system manufacturer. Provide a training program that provides for proper installation of systems, including but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation. The training program shall have a certification program with history of student's attendance and successful completion.

3. For VRF HVAC system provider. Provide a Preinstallation Conference that covers the proper installation of systems, including but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.

1.7 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For VRF HVAC systems to include in emergency, operation, and maintenance manuals.
- B. Software and Firmware Operational Documentation:
 - 1. Software operating and upgrade manuals.
 - 2. Program Software Backup: On CD or DVD, USB media, or approved cloud storage platform, complete with data files.
 - 3. Device address list.
 - 4. Printout of software application and graphic screens.

1.8 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Filters:
 - a. One set(s) for each unit with replaceable filters.
 - b. One set(s) for each unit type and unique size of washable filters.

1.9 QUALITY ASSURANCE

- A. Manufacturer Qualifications:
 - 1. Nationally recognized manufacturer of VRF HVAC systems and products.
 - 2. Shipped VRF HVAC systems with similar requirements to those indicated for a continuous period of five years within time of bid.
 - 3. VRF HVAC systems and products that have been successfully tested and in use on at least five completed projects.
 - 4. Having complete published catalog literature, installation, and operation and maintenance manuals for all products intended for use.
 - 5. Having full-time in-house employees for the following:
 - a. Product research and development.
 - b. Product and application engineering.
 - c. Product manufacturing, testing, and quality control.
 - d. Technical support for system installation training, startup, commissioning, and troubleshooting of installations.
 - e. Owner training.

- B. Factory-Authorized Service Representative Qualifications:
 - 1. Authorized representative of, and trained by, VRF HVAC system manufacturer.
 - 2. Demonstrated past experience with products being installed for period within three consecutive years before time of bid.
 - 3. Demonstrated past experience on five projects of similar complexity, scope, and value.
 - a. Each person assigned to Project shall have demonstrated past experience.
 - 4. Staffing resources of competent and experienced full-time employees that are assigned to execute work according to schedule.
 - 5. Service and maintenance staff assigned to support Project during warranty period.
 - 6. Product parts inventory to support ongoing system operation for a period of not less than five years after Substantial Completion.
 - 7. VRF HVAC system manufacturer's backing to take over execution of Work if necessary to comply with requirements indicated. Include Project-specific written letter, signed by manufacturer's corporate officer, if requested.
- C. Installer Qualifications: An entity that employs installers and supervisors who are trained and approved by VRF HVAC system manufacturer.
 - 1. Each employee shall be certified by manufacturer for proper installation of systems, including, but not limited to, equipment, piping, controls, and accessories indicated and furnished for installation.
 - 2. Installer certification shall be valid and current for duration of Project.
 - 3. Retain copies of Installer certificates on-site and make available on request.
 - 4. Each person assigned to Project shall have demonstrated past experience.
 - a. Demonstrated past experience with products being installed for period within three consecutive years before time of bid.
 - b. Demonstrated past experience on five projects of similar complexity, scope, and value.
 - 5. Installers shall have staffing resources of competent, trained, and experienced full-time employees that are assigned to execute work according to schedule.
- D. ISO Compliance: System equipment and components furnished by VRF HVAC system manufacturer shall be manufactured in an ISO 9001 and ISO 14001 facility.

1.10 DELIVERY, STORAGE, AND HANDLING

- A. Deliver and store products in a clean and dry place.
- B. Comply with manufacturer's written rigging and installation instructions for unloading and moving to final installed location.
- C. Handle products carefully to prevent damage, breaking, denting, and scoring. Do not install damaged products.

- D. Protect products from weather, dirt, dust, water, construction debris, and physical damage.
 - 1. Retain factory-applied coverings on equipment to protect finishes during construction and remove just prior to operating unit.
 - 2. Cover unit openings before installation to prevent dirt and dust from entering inside of units. If required to remover coverings during unit installation, reapply coverings over openings after unit installation and remove just prior to operating unit.
- E. Replace installed products damaged during construction.

1.11 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace equipment and components that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Structural failures.
 - b. Faulty operation.
 - c. Deterioration of metals, metal finishes, and other materials beyond normal weathering and use.
 - 2. Warranty Period:
 - a. For Compressor: Five year(s) from date of Substantial Completion.
 - b. For Parts, Including Controls: Five year(s) from date of Substantial Completion.
 - c. For Labor: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - 1. Johnson Controls, Inc.
 - 2. LG Electronics.
 - 3. Samsung HVAC.
 - 4. Trane Company (The).
- B. Source Limitations: Obtain products from single source from single manufacturer including, but not limited to, the following:
 - 1. Indoor and outdoor units, including accessories.
 - 2. Controls and software.
 - 3. HRCUs.
 - 4. Refrigerant isolation valves.

5. Specialty refrigerant pipe fittings.

2.2 SYSTEM DESCRIPTION

- A. Direct-expansion (DX) VRF HVAC system(s) with variable capacity in response to varying cooling and heating loads. System shall consist of multiple indoor units, HRCUs, outdoor unit(s), piping, controls, and electrical power to make complete operating system(s) complying with requirements indicated.
 - 1. Three-pipe system design.
 - 2. System(s) operation, heat recovery as indicated on Drawings.
 - 3. Each system with one refrigerant circuit shared by all indoor units connected to system.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. AHRI Compliance: System and equipment performance certified according to AHRI 1230 and products listed in AHRI directory.
- D. ASHRAE Compliance:
 - 1. ASHRAE 15: For safety code for mechanical refrigeration.
 - 2. ASHRAE 62.1: For indoor air quality.
 - 3. ASHRAE 135: For control network protocol with remote communication.
 - 4. ASHRAE/IES 90.1 Compliance: For system and component energy efficiency.
- E. UL Compliance: Comply with UL 1995.

2.3 PERFORMANCE REQUIREMENTS

- A. Delegated Design: Engage a qualified professional engineer or specialist, as defined in Section 014000 "Quality Requirements," to design complete and operational VRF HVAC system(s) complying with requirements indicated.
 - 1. Provide system refrigerant calculations.
 - a. Refrigerant concentration limits shall be within allowable limits of ASHRAE 15 and governing codes.
 - b. Indicate compliance with manufacturer's maximum vertical and horizontal travel distances. Prepare a comparison table for each system showing calculated distances compared to manufacturer's maximum allowed distances.
 - 2. System Refrigerant Piping and Tubing:
 - a. Arrangement: Arrange piping to interconnect indoor units, HRCUs, and outdoor unit(s) in compliance with manufacturer requirements and requirements indicated.
 - b. Routing: Conceal piping above ceilings and behind walls to maximum extent possible.

c. Sizing: Size piping system, using a software program acceptable to manufacturer, to provide performance requirements indicated. Consider requirements to accommodate future change requirements.

3. System Controls:

- a. Network arrangement.
- b. Network interface with other building systems.
- c. Product selection.
- d. Sizing.

B. Service Access:

- 1. Provide and document service access requirements.
- 2. Locate equipment, system isolation valves, and other system components that require service and inspection in easily accessible locations. Avoid locations that are difficult to access if possible.
- 3. Where serviceable components are installed behind walls and above inaccessible ceilings, provide finished assembly with access doors or panels to gain access. Properly size the openings to allow for service, removal, and replacement.
- 4. If less than full and unrestricted access is provided, locate components within an 18-inch reach of the finished assembly.
- 5. Where ladder access is required to service elevated components, provide an installation that provides for sufficient access within ladder manufacturer's written instructions for use.
- 6. Comply with OSHA regulations.

C. System Design and Installation Requirements:

- 1. Design and install systems indicated according to manufacturer's recommendations and written instructions.
- 2. Where manufacturer's requirements differ from requirements indicated, contact Architect for direction. The most stringent requirements should apply unless otherwise directed in writing by Architect.
- D. Isolation of Equipment: Provide isolation valves as shown on the drawings for service, removal, and replacement without interrupting system operation.
- E. System Capacity Ratio: The sum of connected capacity of all indoor units shall be within the following range of outdoor-unit rated capacity:
 - 1. Not less than 50 percent.
 - 2. Not more than 150 percent.
 - 3. Range acceptable to manufacturer.
- F. System Turndown: Stable operation down to 20 percent of outdoor-unit capacity.
- G. System Auto Refrigerant Charge: Each system shall have an automatic refrigerant charge function to ensure the proper amount of refrigerant is installed in system.

H. Outdoor Conditions:

- 1. Suitable for outdoor ambient conditions encountered.
 - a. Design equipment and supports to withstand wind loads of governing code.
 - b. Design equipment and supports to withstand snow and ice loads of governing code.
 - c. Provide corrosion-resistant coating for components and supports where located in coastal or industrial climates that are known to be harmful to materials and finishes.
- I. Thermal Movements: Allow for controlled thermal movements from ambient, surface, and system temperature changes.
- J. Capacities and Characteristics: As indicated on Drawings.

2.4 INDOOR, CONCEALED, CEILING-MOUNTED UNITS FOR DUCTING

A. Description: Factory-assembled complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:

- 1. Material: Galvanized or painted steel.
- 2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
- 3. Duct Connections: Extended collar or flange, or designated exterior cabinet surface, designed for attaching field-installed ductwork.
- 4. Mounting: Manufacturer-designed provisions for field installation.
- 5. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

- 1. Coil Casing: Aluminum, galvanized, or stainless steel.
- 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
- 3. Coil Tubes: Copper, of diameter and thickness required by performance.
- 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
- 5. Unit Internal Tubing: Copper tubing with brazed joints.
- 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
- 7. Field Piping Connections: Manufacturer's standard.
- 8. Factory Charge: Dehydrated air or nitrogen.
- 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.

- 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
- 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:

1. Fan(s):

- a. Direct-drive arrangement.
- b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
- c. Fabricated from non-ferrous components or ferrous components with corrosion-resistant finish.
- d. Wheels statically and dynamically balanced.
- 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
- 3. Motor Protection: Integral protection against thermal, overload, and voltage fluctuations.
- 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
- 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:

- 1. Access: Bottom, side, or rear to accommodate field installation without removing ductwork and to accommodate filter replacement without need for tools.
- 2. Efficiency: ASHRAE 52.2, MERV 7.

G. Unit Accessories:

- 1. Outdoor Air Ventilation Kit: Connection, motorized damper, and control sized to allow sequence of operation indicated on Drawings.
- 2. Remote Room Temperature Sensor Kit: Wall-mounted, hardwired room temperature sensor kit for use in rooms that do not have room temperature measurement.

H. Unit Controls:

- 1. Enclosure: Metal, suitable for indoor locations.
- 2. Factory-Installed Controller: Configurable digital control.
- 3. Factory-Installed Sensors:
 - a. Unit inlet air temperature.
 - b. Coil entering refrigerant temperature.
 - c. Coil leaving refrigerant temperature.

4. Features and Functions:

- a. Self-diagnostics.
- b. Time delay.
- c. Auto-restart.
- d. External static pressure control.

- e. Auto operation mode.
- f. Manual operation mode.
- g. Filter service notification.
- h. Power consumption display.
- i. Drain assembly high water level safety shutdown and notification.
- i. Run test switch.
- 5. Communication: Network communication with other indoor and outdoor units.
- 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

I. Unit Electrical:

- 1. Enclosure: Metal, suitable for indoor locations.
- 2. Field Connection: Single point connection to power unit and integral controls.
- 3. Disconnecting Means: Factory-mounted circuit breaker or switch.
- 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
- 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 6. Raceways: Enclose line voltage wiring in raceways.

2.5 INDOOR, EXPOSED, WALL-MOUNTED UNITS

A. Description: Factory-assembled complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.

B. Cabinet:

- 1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
- 2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
- 3. Mounting: Manufacturer-designed provisions for field installation.
- 4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

- 1. Coil Casing: Aluminum, galvanized, or stainless steel.
- 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
- 3. Coil Tubes: Copper, of diameter and thickness required by performance.
- 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
- 5. Unit Internal Tubing: Copper tubing with brazed joints.
- 6. Unit Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.

- 7. Field Piping Connections: Manufacturer's standard.
- 8. Factory Charge: Dehydrated air or nitrogen.
- 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

- 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
- 2. Condensate Removal:
 - a. Provide unit with field-installed condensate pump accessory.
- 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:

1. Fan(s):

- a. Direct-drive arrangement.
- b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
- c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
- d. Wheels statically and dynamically balanced.
- 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
- 3. Motor Protection: Integral protection against thermal, overload, and voltage fluctuations.
- 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
- 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:

- 1. Access: Front, to accommodate filter replacement without the need for tools.
- 2. Washable Media: Manufacturer's standard filter with antimicrobial treatment.
- G. Grille Assembly: Manufacturer's standard discharge grille mounted in top or front face of unit cabinet.

H. Unit Accessories:

1. Condensate Pump: Integral reservoir and control with electrical power connection through unit power.

I. Unit Controls:

- 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
- 2. Factory-Installed Controller: Configurable digital control.
- 3. Factory-Installed Sensors: Unit inlet air temperature, Coil entering refrigerant temperature, Coil leaving refrigerant temperature.

- 4. Features and Functions: Self-diagnostics, time delay, auto-restart, auto operation mode, manual operation mode, filter service notification, drain assembly high water level safety shutdown and notification, run test switch.
- 5. Communication: Network communication with other indoor units and outdoor unit(s).
- 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:

- 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
- 2. Field Connection: Single point connection to power entire unit and integral controls.
- 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
- 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
- 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

2.6 INDOOR, RECESSED, CEILING-MOUNTED UNITS

A. Description: Factory-assembled complete unit with components, piping, wiring, and controls required for mating to ductwork, piping, power, and controls field connections.

B. Cabinet:

- 1. Material: Painted steel, or coated steel frame covered by a plastic cabinet, with an architectural acceptable finish suitable for tenant occupancy on exposed surfaces.
- 2. Insulation: Manufacturer's standard internal insulation, complying with ASHRAE 62.1, to provide thermal resistance and prevent condensation.
- 3. Mounting: Manufacturer-designed provisions for field installation.
- 4. Internal Access: Removable panels of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. DX Coil Assembly:

- 1. Coil Casing: Aluminum, galvanized, or stainless steel.
- 2. Coil Fins: Aluminum, mechanically bonded to tubes, with arrangement required by performance.
- 3. Coil Tubes: Copper, of diameter and thickness required by performance.
- 4. Expansion Valve: Electronic modulating type with linear or proportional characteristics.
- 5. Internal Tubing: Copper tubing with brazed joints.
- 6. Internal Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
- 7. Field Piping Connections: Manufacturer's standard.
- 8. Factory Charge: Dehydrated air or nitrogen.
- 9. Testing: Factory pressure tested and verified to be without leaks.

D. Drain Assembly:

- 1. Pan: Non-ferrous material, with bottom sloped to low point drain connection.
- 2. Condensate Removal: Unit-mounted pump or other integral lifting mechanism, capable of lifting drain water to an elevation above top of cabinet.
- 3. Field Piping Connection: Non-ferrous material with threaded NPT.

E. Fan and Motor Assembly:

1. Fan(s):

- a. Direct-drive arrangement.
- b. Single or multiple fans connected to a common motor shaft and driven by a single motor.
- c. Fabricated from non-ferrous components or ferrous components with corrosion protection finish.
- d. Wheels statically and dynamically balanced.
- 2. Motor: Brushless dc or electronically commutated with permanently lubricated bearings.
- 3. Motor Protection: Integral protection against thermal, overload, and voltage fluctuations.
- 4. Speed Settings and Control: Two (low, high), three (low, medium, high), or more than three speed settings or variable speed with a speed range of least 50 percent.
- 5. Vibration Control: Integral isolation to dampen vibration transmission.

F. Filter Assembly:

- 1. Access: Bottom, to accommodate filter replacement without the need for tools.
- 2. Efficiency: ASHRAE 52.2, MERV 7.
- G. Discharge-Air Grille Assembly: Mounted in bottom of unit cabinet.
 - 1. Discharge Pattern: One-, two-, three-, or four-way throw as indicated on Drawings.
 - a. Discharge Pattern Adjustment: Field-adjustable limits for up and down range of motion.
 - b. Discharge Pattern Closure: Ability to close individual discharges of units with multiple patterns.
- H. Return-Air Grille Assembly: Manufacturer's standard grille mounted in bottom of unit cabinet.

I. Unit Controls:

- 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
- 2. Factory-Installed Controller: Configurable digital control.
- 3. Factory-Installed Sensors: Unit inlet air temperature, coil entering refrigerant temperature, and coil leaving refrigerant temperature.
- 4. Features and Functions: Self-diagnostics, time delay, auto-restart, auto operation mode, manual operation mode, filter service notification, drain assembly high water level safety shutdown and notification, run test switch.
- 5. Communication: Network communication with other indoor units and outdoor unit(s).

- 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

J. Unit Electrical:

- 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
- 2. Field Connection: Single point connection to power entire unit and integral controls.
- 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
- 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
- 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

2.7 OUTDOOR, AIR-SOURCE HEAT RECOVERY UNITS

- A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.
 - 1. Specially designed for use in systems with simultaneous heating and cooling.
 - 2. Systems shall consist of one unit, or multiple unit modules that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.
 - 3. All units installed shall be from the same product development generation.

B. Cabinet:

- 1. Galvanized steel and coated with a corrosion-resistant finish.
 - a. Coating with documented salt spray test performance of 1000 hours according ASTM B 117 surface scratch test (SST) procedure.
- 2. Mounting: Manufacturer-designed provisions for field installation.
- 3. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.

C. Compressor and Motor Assembly:

- 1. One or more positive-displacement, direct-drive and hermetically sealed scroll compressor(s) with inverter drive and turndown to 15 percent of rated capacity.
- 2. Protection: Integral protection against the following:
 - a. High refrigerant pressure.
 - b. Low oil level.
 - c. High oil temperature.
 - d. Thermal and overload.
 - e. Voltage fluctuations.

- f. Phase failure and phase reversal.
- g. Short cycling.
- 3. Speed Control: Variable to automatically maintain refrigerant suction and condensing pressures while varying refrigerant flow to satisfy system cooling and heating loads.
- 4. Vibration Control: Integral isolation to dampen vibration transmission.
- 5. Oil management system to ensure safe and proper lubrication over entire operating range.
- 6. Crankcase heaters with integral control to maintain safe operating temperature.
- 7. Fusible plug.

D. Condenser Coil Assembly:

1. Plate Fin Coils:

- a. Casing: Aluminum, galvanized, or stainless steel.
- b. Fins: Aluminum or copper, mechanically bonded to tubes, with arrangement required by performance.
- c. Tubes: Copper, of diameter and thickness required by performance.

2. Aluminum Microchannel Coils:

- a. Series of flat tubes containing a series of multiple, parallel-flow microchannels layered between refrigerant header manifolds.
- b. Single- or multiple-pass arrangement.
- c. Construct fins, tubes, and header manifolds of aluminum alloy.
- 3. Corrosion Protection: Coating with documented salt spray test performance of 1000 hours according ASTM B 117 surface scratch test (SST) procedure.
- 4. Hail Protection: Provide condenser coils with louvers, baffles, or hoods to protect against hail damage.

E. Condenser Fan and Motor Assembly:

- 1. Fan(s): Propeller type.
 - a. Direct-drive arrangement.
 - b. Fabricated from non-ferrous components or ferrous components with corrosion protection finish to match performance indicated for condenser coil.
 - c. Statically and dynamically balanced.
- 2. Fan Guards: Removable safety guards complying with OSHA regulations. If using metal materials, coat with corrosion-resistant coating to match performance indicated for condenser coil.
- 3. Motor(s): Brushless dc or electronically commutated with permanently lubricated bearings and rated for outdoor duty.
- 4. Motor Protection: Integral protection against thermal, overload, and voltage fluctuations.
- 5. Speed Settings and Control: Variable speed with a speed range of least 75 percent.
- 6. Vibration Control: Integral isolation to dampen vibration transmission.

F. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.

G. Unit Controls:

- 1. Enclosure: Manufacturer's standard, and suitable for unprotected outdoor locations.
- 2. Factory-Installed Controller: Configurable digital control.
- 3. Factory-Installed Sensors:
 - a. Refrigerant suction temperature.
 - b. Refrigerant discharge temperature.
 - c. Outdoor air temperature.
 - d. Refrigerant high pressure.
 - e. Refrigerant low pressure.
 - f. Oil level.
- 4. Features and Functions: Self-diagnostics, time delay, auto-restart, fuse protection, auto operation mode, manual operation mode, night setback control, run test switch equalize run time between multiple same components.
- 5. Communication: Network communication with indoor units and other outdoor unit(s).
- 6. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 7. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

H. Unit Electrical:

- 1. Enclosure: Metal, similar to enclosure, and suitable for unprotected outdoor locations.
- 2. Field Connection: Single point connection to power entire unit and integral controls.
- 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
- 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
- 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.
- I. Unit Hardware: Zinc-plated steel, or stainless steel. Coat exposed surfaces with additional corrosion-resistant coating if required to prevention corrosion when exposed to salt spray test for 1000 hours according ASTM B 117.

J. Unit Piping:

- 1. Unit Tubing: Copper tubing with brazed joints.
- 2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
- 3. Field Piping Connections: Manufacturer's standard.
- 4. Factory Charge: Dehydrated air or nitrogen.
- 5. Testing: Factory pressure tested and verified to be without leaks.

2.8 HEAT RECOVERY CONTROL UNITS (HRCUs)

- A. Description: Factory-assembled and -tested complete unit with components, piping, wiring, and controls required for mating to piping, power, and controls field connections.
 - 1. Specially designed for use in systems with simultaneous heating and cooling.
 - 2. Systems shall consist of one unit, or multiple unit that are designed by variable refrigerant system manufacturer for field interconnection to make a single refrigeration circuit that connects multiple indoor units.

B. Cabinet:

- 1. Galvanized-steel construction.
- 2. Insulation: Manufacturer's standard internal insulation to provide thermal resistance and prevent condensation.
- 3. Mounting: Manufacturer-designed provisions for field installation.
- 4. Internal Access: Removable panels or hinged doors of adequate size for field access to internal components for inspection, cleaning, service, and replacement.
- C. Drain Pan: If required by manufacturer's design, provide unit with non-ferrous drain pan with bottom sloped to a low point drain connection.
- D. Refrigeration Assemblies and Specialties:
 - 1. Specially designed by manufacturer for type of VRF HVAC system being installed, either two or three pipe.
 - 2. Each refrigerant branch circuit shall have refrigerant control valve(s) to control refrigerant flow.

E. Unit Controls:

- 1. Enclosure: Manufacturer's standard, and suitable for indoor locations.
- 2. Factory-Installed Controller: Configurable digital control.
- 3. Features and Functions: Self-diagnostics, fuse protection.
- 4. Communication: Network communication with indoor units and outdoor unit(s).
- 5. Cable and Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.
- 6. Field Connection: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

F. Unit Electrical:

- 1. Enclosure: Metal, similar to enclosure, and suitable for indoor locations.
- 2. Field Connection: Single point connection to power entire unit and integral controls.
- 3. Disconnecting Means: Factory-mounted circuit breaker or switch, complying with NFPA 70.
- 4. Control Transformer: Manufacturer's standard. Coordinate requirements with field power supply.
- 5. Wiring: Manufacturer's standard with each connection labeled and corresponding to a unit-mounted wiring diagram.

6. Raceways: Enclose line voltage wiring in raceways to comply with NFPA 70.

G. Unit Piping:

- 1. Unit Tubing: Copper tubing with brazed joints.
- 2. Unit Tubing Insulation: Manufacturer's standard insulation, of thickness to prevent condensation.
- 3. Field Piping Connections: Manufacturer's standard.
- 4. Factory Charge: Dehydrated air or nitrogen.
- 5. Testing: Factory pressure tested and verified to be without leaks.

2.9 SYSTEM CONTROLS

A. General Requirements:

- 1. Network: Indoor units, HRCUs, and outdoor units shall include integral controls and connect through a TIA-485A or manufacturer-selected control network.
- 2. Network Communication Protocol: Manufacturer proprietary or open control communication between interconnected units.
- 3. Integration with Building Automation System: ASHRAE 135, BACnet IP and certified by BACnet Testing Lab (BTL), including the following:
 - a. Ethernet connection via RJ-45 connectors and port with transmission at 100 Mbps or higher.
 - b. Integration devices shall be connected to local uninterruptible power supply unit(s) to provide at least 5 minutes of battery backup operation after a power loss.
 - c. Integration shall include monitoring, scheduling, and change of value notifications.

4. Operator Interface:

- a. Operators shall interface with system and unit controls through the following:
 - 1) Operator interfaces integral to controllers.
 - 2) Integration with Building Automation System.
- b. Users shall be capable of interface with controllers for indoor units control to extent privileges are enabled. Control features available to users shall include the following:
 - 1) On/off control.
 - 2) Temperature set-point adjustment.

B. VRF HVAC System Operator Software for PC:

1. Software offered by VRF HVAC system manufacturer shall provide system operators with ability to monitor and control VRF HVAC system(s) from a single dedicated Owner-furnished PC.

- 2. Software shall provide operator with a graphic user interface to allow monitoring and control of multiple central controllers from a single device location through point-and-click mouse exchange.
- 3. Plan views shall show building plans with location of indoor units and identification superimposed on plans.
- 4. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.
- 5. Schedules operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Schedules daily, weekly, and annual events.
- 6. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
- 7. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.
- 8. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.
- 9. Supports Multiple Languages: English.
- 10. Supports Imperial and Metric Temperature Units: Fahrenheit.
- 11. Displays service notifications and error codes.
- 12. Monitors and displays up to 3000 item error history and 10000 item operation history for regular reporting and further archiving.
- 13. Monitors and displays cumulative operating time of indoor units.
- 14. Able to disable and enable operation of individual controllers for indoor units.
- 15. Information displayed on individual controllers shall also be available for display.
- 16. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.

C. Central Controllers:

- 1. Centralized control for all indoor and outdoor units from a single central controller location.
 - a. Include multiple interconnected controllers as required.
- 2. Controls operation mode of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units. Operation modes available through central controller shall match those operation modes of controllers for indoor units.
- 3. Schedule operation of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
 - a. Sets schedule for daily, weekly, and annual events.
 - b. Schedule options available through central controller shall at least include the schedule options of controllers for indoor units.
- 4. Changes operating set points of indoor units as individual units, by selected groups of indoor units, or as collection of all indoor units.
- 5. Optimized start feature to start indoor units before scheduled time to reach temperature set-point at scheduled time based on operating history.
- 6. Night setback feature to operate indoor units at energy-conserving heating and cooling temperature set-points during unoccupied periods.

- 7. Service diagnostics tool.
- 8. Able to disable and enable operation of individual controllers for indoor units.
- 9. Information displayed on individual controllers shall also be available for display through central controller.
- 10. Information displayed for outdoor units, including refrigerant high and low pressures percent capacity.
- 11. Multiple RJ-45 ports for direct connection to a local PC and an Ethernet network switch.
- 12. Operator interface through a backlit, high-resolution color display touch panel.

D. Wired Controllers for Indoor Units:

- 1. Single controller capable of controlling multiple indoor units as group.
- 2. Auto Timeout Touch Screen LCD: Timeout duration shall be adjustable.
- 3. Multiple Language: English.
- 4. Temperature Units: Fahrenheit.
- 5. On/Off: Turns indoor unit on or off.
- 6. Hold: Hold operation settings until hold is released.
- 7. Operation Mode: Cool, Heat, Auto, Dehumidification, Fan Only, and Setback.
- 8. Temperature Display: 1-degree increments.
- 9. Relative Humidity Display: 1 percent increments.
- 10. Fan Speed Setting: Select between available options furnished with the unit.
- 11. Airflow Direction Setting: If applicable to unit, select between available options furnished with the unit.
- 12. Seven-day programmable operating schedule with up to five events per day. Operations shall include On/Off, Operation Mode, and Temperature Set-Point.
- 13. Auto Off Timer: Operates unit for an adjustable time duration and then turns unit off.
- 14. Occupancy detection.
- 15. Service Notification Display: "Filter".
- 16. Service Run Tests: Limit use by service personnel to troubleshoot operation.
- 17. Error Code Notification Display: Used by service personnel to troubleshoot abnormal operation and equipment failure.
- 18. User and Service Passwords: Capable of preventing adjustments by unauthorized users.
- 19. Setting stored in nonvolatile memory to ensure that settings are not lost if power is lost. Battery backup for date and time only.
- 20. Low-voltage power required for controller shall be powered through non-polar connections to indoor unit.

E. Wireless Controllers for Indoor Units:

1. Wireless Communication:

- a. Controller communicates to remote-mounted receiver that is wired to indoor unit(s).
 - 1) Include receivers with wireless controllers as required to complete installation.
 - 2) Low-voltage power required for receivers shall be powered through non-polar connections to indoor unit.

- b. One wireless controller shall be capable of communicating with one or multiple receivers to control one or multiple indoor units as a group.
- 2. Controller Battery Life: Three years.
- 3. Auto Timeout Touch Screen LCD: Timeout duration shall be adjustable.
- 4. Multiple Language: English.
- 5. Temperature Units: Fahrenheit.
- 6. On/Off: Turns indoor unit on or off.
- 7. Hold: Hold operation settings until hold is released.
- 8. Operation Mode: Cool, Heat, Auto, Dehumidification, Fan Only, and Setback.
- 9. Temperature Display: 1-degree increments.
- 10. Relative Humidity Display: 1 percent increments.
- 11. Fan Speed Setting: Select between available options furnished with the unit.
- 12. Airflow Direction Setting: If applicable to unit, select between available options furnished with the unit.
- 13. Seven-day programmable operating schedule with up to five events per day. Operations shall include On/Off, Operation Mode, and Temperature Set-Point.
- 14. Auto Off Timer: Operates unit for an adjustable time duration and then turns unit off.
- 15. Occupancy detection.
- 16. Service Notification Display: "Filter".
- 17. Service Run Tests: Limit use by service personnel to troubleshoot operation.
- 18. Error Code Notification Display: Used by service personnel to troubleshoot abnormal operation and equipment failure.
- 19. User and Service Passwords: Capable of preventing adjustments by unauthorized users.
- 20. Setting stored in non-volatile memory to ensure that settings are not lost if power is lost. Battery for date and time only.

2.10 SYSTEM REFRIGERANT AND OIL

A. Refrigerant:

- 1. As required by VRF HVAC system manufacturer for system to comply with performance requirements indicated.
- 2. ASHRAE 34, Class A1 refrigerant classification.
- 3. R-410a.

B. Oil:

1. As required by VRF HVAC system manufacturer and to comply with performance requirements indicated.

2.11 SYSTEM CONDENSATE DRAIN PIPING

- A. If more than one material is listed, material selection is Contractor's option.
- B. Copper Tubing:
 - 1. Drawn-Temper Tubing: According to ASTM B 88, Type L.

- 2. Wrought-Copper Fittings: ASME B16.22.
- 3. Wrought-Copper Unions: ASME B16.22.
- 4. Solder Filler Metals: ASTM B 32, lead-free alloys, and water-flushable flux according to ASTM B 813.

2.12 SYSTEM REFRIGERANT PIPING

A. Refrigerant Piping:

- 1. Copper Tube: ASTM B 280, Type ACR.
- 2. Wrought-Copper Fittings: ASME B16.22.
- 3. Brazing Filler Metals: AWS A5.8/A5.8M.

B. Refrigerant Tubing Kits:

- 1. Furnished by VRF HVAC system manufacturer.
- 2. Factory-rolled and -bundled, soft-copper tubing with tubing termination fittings at each end.
- 3. Standard one-piece length for connecting to indoor units.
- 4. Pre-insulated with flexible elastomeric insulation of thickness to comply with governing energy code and sufficient to eliminate condensation.
- 5. Factory Charge: Dehydrated air or nitrogen.
- C. Divided-Flow Specialty Fittings: Where required by VRF HVAC system manufacturer for proper system operation, VRF HVAC system manufacturer shall furnish specialty fittings with identification and instructions for proper installation by Installer.

D. Refrigerant Isolation Ball Valves:

- 1. Description: Uni-body full port design, rated for maximum system temperature and pressure, and factory tested under pressure to ensure tight shutoff. Designed for valve operation without removing seal cap.
- 2. Seals: Compatible with system refrigerant and oil. Seal service life of at least 20 years.
- 3. Valve Connections: Flare or sweat depending on size.

2.13 METAL HANGERS AND SUPPORTS

A. Copper Tube Hangers:

- 1. Description: MSS SP-58, Types 1 through 58, copper-coated-steel, factory-fabricated components.
- 2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized or copper-coated steel.

B. Plastic Pipe Hangers:

1. Description: MSS SP-58, Types 1 through 58, galvanized-steel, factory-fabricated components.

2. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized steel.

2.14 METAL FRAMING SYSTEMS

A. MFMA Manufacturer Metal Framing Systems:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. B-line, an Eaton business.
 - b. Flex-Strut Inc.
 - c. G-Strut.
- 2. Description: Shop- or field-fabricated, pipe-support assembly for supporting multiple parallel pipes.
- 3. Standard: MFMA-4.
- 4. Channels: Continuous slotted steel channel with inturned lips.
- 5. Channel Nuts: Formed or stamped steel nuts or other devices designed to fit into channel slot and, when tightened, prevent slipping along channel.
- 6. Hanger Rods: Continuous-thread rod, nuts, and washer made of galvanized steel for use indoors and of stainless steel for use outdoors.
- 7. Metallic Coating for Use Indoors: hot-dip galvanized.
- 8. Plastic Coating for Use Outdoors: epoxy.

2.15 FASTENER SYSTEMS

- A. Powder-Actuated Fasteners: Threaded, zinc-coated steel stud, for use in hardened portland cement concrete with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
- B. Mechanical-Expansion Anchors: Insert-wedge-type anchors, for use in hardened portland cement concrete; with pull-out, tension, and shear capacities appropriate for supported loads and building materials where used.
 - 1. Indoor Applications: Zinc-coated or stainless steel.
 - 2. Outdoor Applications: Stainless steel.

2.16 PIPE STANDS

- A. General Requirements for Pipe Stands: Shop- or field-fabricated assemblies made of manufactured corrosion-resistant components to support roof-mounted piping.
- B. Compact Pipe Stand: One-piece plastic unit with integral-rod roller, pipe clamps, or V-shaped cradle to support pipe, for roof installation without membrane penetration.

- C. Low-Type, Single-Pipe Stand: One-piece stainless-steel base unit with plastic roller, for roof installation without membrane penetration.
- D. High-Type, Single-Pipe Stand:
 - 1. Description: Assembly of base, vertical and horizontal members, and pipe support, for roof installation without membrane penetration.
 - 2. Base: Stainless steel.
 - 3. Vertical Members: Two or more cadmium-plated-steel or stainless-steel, continuous-thread rods.
 - 4. Horizontal Member: Cadmium-plated-steel or stainless-steel rod with plastic or stainless-steel, roller-type pipe support.
- E. High-Type, Multiple-Pipe Stand:
 - 1. Description: Assembly of bases, vertical and horizontal members, and pipe supports, for roof installation without membrane penetration.
 - 2. Bases: One or more; plastic.
 - 3. Vertical Members: Two or more protective-coated-steel channels.
 - 4. Horizontal Member: Protective-coated-steel channel.
 - 5. Pipe Supports: Galvanized-steel, clevis-type pipe hangers.
- F. Curb-Mounted-Type Pipe Stands: Shop- or field-fabricated pipe supports made from structural-steel shapes, continuous-thread rods, and rollers, for mounting on permanent stationary roof curb.

2.17 MISCELLANEOUS SUPPORT MATERIALS

- A. Grout: ASTM C 1107, factory-mixed and -packaged, dry, hydraulic-cement, nonshrink and nonmetallic grout; suitable for interior and exterior applications.
 - 1. Properties: Nonstaining, noncorrosive, and nongaseous.
 - 2. Design Mix: 5000-psi, 28-day compressive strength.
- B. Structural Steel: ASTM A 36/A 36M, carbon-steel plates, shapes, and bars; galvanized.
- C. Threaded Rods: Continuously threaded. Zinc-plated steel or galvanized steel for indoor applications and stainless steel for outdoor applications. Mating nuts and washers of similar material as rods.

2.18 PIPING AND TUBING INSULATION

- A. Comply with requirements in Section 230719 "HVAC Piping Insulation" for system piping insulation requirements.
- B. Condensate Drain Piping and Tubing Insulation and Jacket Requirements:
 - 1. Flexible Elastomeric Insulation:

- a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
- b. Indoors: 3/4 inch thick.

2. Field-Applied Jacket:

- a. Concealed: None required.
- b. Indoors, Exposed to View: None required.

C. Refrigerant Tubing Insulation and Jacket Requirements:

- 1. Flexible Elastomeric Insulation:
 - a. Closed-cell, sponge- or expanded-rubber materials, complying with ASTM C 534, Type I for tubular materials.
 - b. Indoors: 1 inch thick.
 - c. Outdoors: 1 inch thick.

2. Field-Applied Jacket:

- a. Concealed: None required.
- b. Indoors, Exposed to View: None required PVC, color selected by Architect, 20 mils thick.
- c. Outdoors, Exposed to View: Aluminum, smooth, 0.020 inch thick.

D. Metal Jacket Flashing Sealants:

- 1. Materials shall be compatible with insulation materials, jackets, and substrates.
- 2. Fire- and water-resistant, flexible, elastomeric sealant.
- 3. Service Temperature Range: Minus 40 to plus 250 deg F.
- 4. Color: Aluminum.

2.19 SYSTEM CONTROL CABLE

- A. Cable Rating: Listed and labeled for application according to NFPA 70.
 - 1. Flame Travel and Smoke Density in Plenums: As determined by testing identical products according to NFPA 262, by a qualified testing agency. Identify products for installation in plenums with appropriate markings of applicable testing agency.
 - a. Flame Travel Distance: 60 inches or less.
 - b. Peak Optical Smoke Density: 0.5 or less.
 - c. Average Optical Smoke Density: 0.15 or less.
 - 2. Flame Travel and Smoke Density for Riser Cables in Non-Plenum Building Spaces: As determined by testing identical products according to UL 1666.
 - 3. Flame Travel and Smoke Density for Cables in Non-Riser Applications and Non-Plenum Building Spaces: As determined by testing identical products according to UL 1685.

B. Low-Voltage Control Cabling:

- 1. Paired Cable: NFPA 70, Type CMG.
 - a. One pair, twisted, No. 16 AWG, stranded (19x29) or No. 18 AWG, stranded (19x30) tinned-copper conductors as required by VRF HVAC system manufacturer.
 - b. PVC insulation.
 - c. Braided or foil shielded.
 - d. PVC jacket.
 - e. Flame Resistance: Comply with UL 1685.
- 2. Plenum-Rated, Paired Cable: NFPA 70, Type CMP.
 - a. One pair, twisted, No. 16 AWG, stranded (19x29) or No. 18 AWG, stranded (19x30) tinned-copper conductors as required by VRF HVAC system manufacturer.
 - b. PVC insulation.
 - c. Braided or foil shielded.
 - d. PVC jacket.
 - e. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.
 - f. Flame Resistance: Comply with NFPA 262.

C. TIA-485A Network Cabling:

- 1. Standard Cable: NFPA 70, Type CMG.
 - a. Paired, one pair, twisted, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - b. PVC insulation.
 - c. Unshielded.
 - d. PVC jacket.
 - e. Flame Resistance: Comply with UL 1685.
- 2. Plenum-Rated Cable: NFPA 70, Type CMP.
 - a. Paired, one pair, No. 22 AWG, stranded (7x30) tinned-copper conductors.
 - b. Fluorinated ethylene propylene insulation.
 - c. Unshielded.
 - d. Fluorinated ethylene propylene jacket.
 - e. NFPA 262 includes the standard flame-resistance test criteria in common use for cables and conductors.
 - f. Flame Resistance: NFPA 262.
- D. Ethernet Network Cabling: TIA-568-C.2 Category 6 or 6a cable with RJ-45 connectors.
 - 1. Description: Four-pair, balanced-twisted pair cable, certified to meet transmission characteristics of category cable indicated.
 - 2. Conductors: 100-ohm, 23 AWG solid copper.
 - 3. Shielding: Shielded twisted pairs (FTP).
 - 4. Cable Rating: By application.
 - 5. Jacket: thermoplastic.

E. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for control wiring and cable raceways.

2.20 SOURCE QUALITY CONTROL

- A. Factory Tests: Test and inspect factory-assembled equipment.
- B. Equipment will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports for historical record. Submit reports only if requested.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine products before installation. Reject products that are wet, moisture damaged, or mold damaged.
- C. Examine roughing-in for piping and tubing to verify actual locations of connections before equipment installation.
- D. Examine roughing-in for ductwork to verify actual locations of connections before equipment installation.
- E. Examine roughing-in for wiring and conduit to verify actual locations of connections before equipment installation.
- F. Examine walls, floors, roofs, and outdoor pads for suitable conditions where equipment will be installed.
- G. Prepare written report, endorsed by Installer, listing conditions detrimental to performance of the Work.
- H. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 EQUIPMENT INSTALLATION, GENERAL

A. Clearance:

- 1. Maintain manufacturer's recommended clearances for service and maintenance.
- 2. Maintain clearances required by governing code.
- B. Loose Components: Install components, devices, and accessories furnished by manufacturer, with equipment, that are not factory mounted.

1. Loose components shall be installed by manufacturer's service representative or system Installer under supervision of manufacturer's service representative.

3.3 INSTALLATION OF INDOOR UNITS

- A. Install units to be level and plumb while providing a neat and finished appearance.
- B. Unless otherwise required by VRF HVAC system manufacturer, support ceiling-mounted units from structure above using threaded rods; minimum rod size of 3/8 inch.
- C. Adjust supports of exposed and recessed units to draw units tight to adjoining surfaces.
- D. Protect finished surfaces of ceilings, floors, and walls that come in direct contact with units. Refinish or replaced damaged areas after units are installed.
- E. In rooms with ceilings, conceal piping and tubing, controls, and electrical power serving units above ceilings.
- F. In rooms without ceiling, arrange piping and tubing, controls, and electrical power serving units to provide a neat and finished appearance.
- G. Provide lateral bracing if needed to limit movement of suspended units to not more than 0.25 inch.
- H. For floor- and wall-mounted units that are exposed, conceal piping and tubing, controls, and electrical power serving units within walls.
- I. Attachment: Install hardware for proper attachment to supported equipment.
- J. Grouting: Place grout under equipment supports and make bearing surface smooth.

3.4 INSTALLATION OF OUTDOOR UNITS

- A. Install units to be level and plumb while providing a neat and finished appearance.
- B. Install outdoor units on support structures indicated on Drawings.
- C. Roof-Mounted Installations: Install outdoor units on equipment supports. Anchor units to supports with removable, stainless-steel fasteners.

3.5 GENERAL REQUIREMENTS FOR PIPING INSTALLATION

- A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping and tubing systems. Install piping and tubing as indicated unless deviations to layout are approved on coordination drawings.
- B. Install piping and tubing in concealed locations unless otherwise indicated and except in equipment rooms and service areas.

- C. Install piping and tubing at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise.
- D. Install piping and tubing above accessible ceilings to allow sufficient space for ceiling panel removal.
- E. Install piping and tubing to permit valve servicing.
- F. Install piping and tubing at indicated slopes.
- G. Install piping and tubing free of sags.
- H. Install fittings for changes in direction and branch connections.
- I. Install piping and tubing to allow application of insulation.
- J. Install groups of pipes and tubing parallel to each other, spaced to permit applying insulation with service access between insulated piping and tubing.
- K. Install sleeves for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for sleeves specified in Section 230517 "Sleeves and Sleeve Seals for HVAC Piping."
- L. Install escutcheons for piping and tubing penetrations of walls, ceilings, and floors. Comply with requirements for escutcheons specified in Section 230518 "Escutcheons for HVAC Piping."

3.6 INSTALLATION OF SYSTEM CONDENSATE DRAIN PIPING

- A. General Requirements for Drain Piping and Tubing:
 - 1. Install a union in piping at each threaded unit connection.
 - 2. Install an adjustable stainless-steel hose clamp with adjustable gear operator on unit hose connections. Tighten clamp to provide a leak-free installation.
 - 3. If required for unit installation, provide a trap assembly in drain piping to prevent air circulated through unit from passing through drain piping. Comply with more stringent of the following:
 - a. Details indicated on Drawings.
 - b. Manufacturer's requirements.
 - c. Governing codes.
 - d. In the absence of requirements, comply with requirements of ASHRAE handbooks.
 - 4. Extend drain piping from units with drain connections to drain receptors as indicated on Drawings. If not indicated on Drawings, terminate drain connection at nearest accessible location that is not exposed to view by occupants.
 - 5. Provide each 90-degree change in direction with a Y- or T-fitting. Install a threaded plug connection in the dormant side of fitting or future use as a service cleanout.

B. Gravity Drains:

1. Slope piping from unit connection toward drain termination at a constant slope of not less than one percent.

C. Pumped Drains:

1. If unit condensate pump or lift mechanism is not included with an integral check valve, install a full-size check valve in each branch pipe near unit connection to prevent backflow into unit.

3.7 INSTALLATION OF REFRIGERANT PIPING

A. Refrigerant Tubing Kits:

- 1. Unroll and straighten tubing to suit installation. Deviations in straightness of exposed tubing shall be unnoticeable to observer.
- 2. Support tubing using hangers and supports indicated at intervals not to exceed 5 feet. Minimum rod size, 1/4 inch.
- 3. Prepare tubing ends and make mating connections to provide a pressure tight and leak-free installation.
- B. Install refrigerant piping according to ASHRAE 15 and governing codes.
- C. Select system components with pressure rating equal to or greater than system operating pressure.
- D. Install piping as short and direct as possible, with a minimum number of joints and fittings.
- E. Arrange piping to allow inspection and service of equipment. Install valves and specialties in accessible locations to allow for service and inspection. Install access doors or panels as specified in Section 083113 "Access Doors and Frames" if valves or equipment requiring maintenance is concealed behind finished surfaces.
- F. Install refrigerant piping and tubing in protective conduit where installed belowground.
- G. Install refrigerant piping and tubing in rigid or flexible conduit in locations where exposed to mechanical damage.
- H. When brazing, remove or protect components that could be damaged by heat.
- I. Before installation, clean piping, tubing, and fittings to cleanliness level required by VRF HVAC system manufacturer.

J. Joint Construction:

- 1. Ream ends of tubes and remove burrs.
- 2. Remove scale, slag, dirt, and debris from inside and outside of tube and fittings before assembly.

- 3. Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter.
 - a. Use Type BCuP (copper-phosphorus) alloy for joining copper fittings with copper tubing.
 - b. Use Type BAg (cadmium-free silver) alloy for joining copper with bronze.

3.8 INSTALLATION OF METAL HANGERS AND SUPPORTS

- A. Metal Pipe-Hanger Installation: Comply with MSS SP-69 and MSS SP-89. Install hangers, supports, clamps, and attachments as required to properly support piping from the building structure.
- B. Metal Framing System Installation: Arrange for grouping of parallel runs of piping, and support together on field-assembled metal framing systems.
- C. Comply with MFMA-103 for metal framing system selections and applications that are not specified.

D. Fastener System Installation:

- 1. Install powder-actuated fasteners, for use in lightweight concrete or concrete slabs less than 4 inches thick, in concrete after concrete is placed and completely cured. Use operators that are licensed by powder-actuated tool manufacturer. Install fasteners according to powder-actuated tool manufacturer's operating manual.
- 2. Install mechanical-expansion anchors in concrete after concrete is placed and completely cured. Install fasteners according to manufacturer's written instructions.
- 3. Use powder-actuated fasteners or mechanical-expansion anchors instead of building attachments where required in concrete construction.

E. Pipe Stand Installation:

- 1. Pipe Stand Types except Curb-Mounted Type: Assemble components and mount on smooth roof surface. Do not penetrate roof membrane.
- 2. Curb-Mounted-Type Pipe Stands: Assemble components or fabricate pipe stand and mount on permanent, stationary roof curb.
- F. Install hangers and supports complete with necessary attachments, inserts, bolts, rods, nuts, washers, and other accessories.
- G. Install hangers and supports to allow controlled thermal and seismic movement of piping systems, to permit freedom of movement between pipe anchors, and to facilitate action of expansion joints, expansion loops, expansion bends, and similar units.
- H. Install lateral bracing with pipe hangers and supports to prevent swaying.
- I. Install building attachments within concrete slabs or attach to structural steel.
 - 1. Install concrete inserts before concrete is placed; fasten inserts to forms and install reinforcing bars through openings at top of inserts.

- J. Load Distribution: Install hangers and supports so that piping live and dead loads and stresses from movement will not be transmitted to connected equipment.
- K. Pipe Slopes: Install hangers and supports to provide indicated pipe slopes and to not exceed maximum pipe deflections allowed by ASME B31.9 for building services piping.
- L. Piping and Tubing Insulation:
 - 1. Install MSS SP-58, Type 40, protective shields on cold piping with vapor barrier. Shields shall span an arc of 180 degrees.
 - 2. Shield Dimensions for Pipe: Not less than the following:
 - a. NPS 1/4 to NPS 3-1/2: 12 inches long and 0.048 inch thick.
- M. Horizontal-Piping Hangers and Supports: Install the following types:
 - 1. Adjustable, Steel Clevis Hangers (MSS Type 1): For suspension of noninsulated or insulated, stationary pipes NPS 1/2 to NPS 30.
 - 2. Pipe Hangers (MSS Type 5): For suspension of pipes NPS 1/2 to NPS 4, to allow off-center closure for hanger installation before pipe erection.
 - 3. Clips (MSS Type 26): For support of insulated pipes not subject to expansion or contraction.
 - 4. Multiple horizontal pipes located indoors may use metal framing systems with split clamp attachment for each pipe in lieu if individual clevis hangers.
 - 5. Pipe stands for horizontal pipes located outdoors.
 - 6. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe.
 - 7. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe.
- N. Horizontal Piping Hanger Spacing and Rod Size: Install hangers for drawn-temper copper piping with the following maximum horizontal spacing and minimum rod sizes:
 - 1. Sizes through NPS 3/4: Maximum span, 5 feet; minimum rod size, 1/4 inch.
 - 2. NPS 1: Maximum span, 6 feet; minimum rod size, 1/4 inch.
 - 3. NPS 1-1/4: Maximum span, 7 feet; minimum rod size, 3/8 inch.
 - 4. NPS 1-1/2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 5. NPS 2: Maximum span, 8 feet; minimum rod size, 3/8 inch.
 - 6. NPS 2-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch.
 - 7. NPS 3 and Larger: Maximum span, 10 feet; minimum rod size, 3/8 inch.
- O. Plastic Pipe Hanger and Support Spacing:
 - 1. Space hangers and supports according to pipe manufacturer's written instructions for service conditions.
 - 2. Maximum spacing, 5 feet; minimum rod size, 1/4 inch.
- P. Vertical-Piping Clamps: Install the following types:
 - 1. Extension Pipe or Riser Clamps (MSS Type 8).

- 2. Carbon- or Alloy-Steel Riser Clamps (MSS Type 42): If longer ends are required for riser clamps.
- Q. Support vertical runs at roof, at each floor, and at midpoint intervals between floors, not to exceed 5 feet.
- R. Comply with MSS SP-69 for pipe-hanger selections and applications that are not specified.
- S. Use hangers, supports, and attachments with galvanized coatings unless otherwise indicated.
- T. Hanger Adjustments: Adjust hangers to distribute loads equally on attachments and to achieve indicated slope of pipe.
- U. Trim excess length of continuous-thread hanger and support rods to 1 inch.
- V. Hanger-Rod Attachments: Install the following types:
 - 1. Steel Turnbuckles (MSS Type 13): For adjustment up to 6 inches for heavy loads.
 - 2. Steel Clevises (MSS Type 14): For 120 to 450 deg F piping installations.
 - 3. Malleable-Iron Sockets (MSS Type 16): For attaching hanger rods to various types of building attachments.
 - 4. Steel Weldless Eye Nuts (MSS Type 17): For 120 to 450 deg F piping installations.

W. Building Attachments: Install the following types:

- 1. Steel or Malleable Concrete Inserts (MSS Type 18): For upper attachment to suspend pipe hangers from concrete ceiling.
- 2. Top-Beam C-Clamps (MSS Type 19): For use under roof installations with bar-joist construction, to attach to top flange of structural shape.
- 3. Side-Beam or Channel Clamps (MSS Type 20): For attaching to bottom flange of beams, channels, or angles.
- 4. Center-Beam Clamps (MSS Type 21): For attaching to center of bottom flange of beams.
- 5. Welded Beam Attachments (MSS Type 22): For attaching to bottom of beams if loads are considerable and rod sizes are large.
- 6. C-Clamps (MSS Type 23): For structural shapes.
- 7. Top-Beam Clamps (MSS Type 25): For top of beams if hanger rod is required tangent to flange edge.
- 8. Side-Beam Clamps (MSS Type 27): For bottom of steel I-beams.
- 9. Steel-Beam Clamps with Eye Nuts (MSS Type 28): For attaching to bottom of steel Ibeams for heavy loads.
- 10. Linked-Steel Clamps with Eye Nuts (MSS Type 29): For attaching to bottom of steel Ibeams for heavy loads, with link extensions.
- 11. Malleable-Beam Clamps with Extension Pieces (MSS Type 30): For attaching to structural steel.
- 12. Welded-Steel Brackets: For support of pipes from below or for suspending from above by using clip and rod. Use one of the following for indicated loads:
 - a. Light (MSS Type 31): 750 lb.
 - b. Medium (MSS Type 32): 1500 lb.

- 13. Side-Beam Brackets (MSS Type 34): For sides of steel or wooden beams.
- 14. Plate Lugs (MSS Type 57): For attaching to steel beams if flexibility at beam is required.
- 15. Horizontal Travelers (MSS Type 58): For supporting piping systems subject to linear horizontal movement where headroom is limited.

3.9 INSTALLATION OF PIPING AND TUBING INSULATION

- A. Seal longitudinal seams and end joints with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated. Installation to maintain a continuous vapor barrier.
- B. Insulation Installation on Pipe Fittings and Elbows:
 - 1. Install mitered sections of pipe insulation.
 - 2. Secure insulation materials and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- C. Insulation Installation on Valves and Pipe Specialties:
 - 1. Install preformed valve covers manufactured of same material as pipe insulation when available.
 - 2. When preformed valve covers are unavailable, install cut sections of pipe and sheet insulation to valve body. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation.
 - 3. Secure insulation to valves and specialties and seal seams with manufacturer's recommended adhesive to eliminate openings in insulation that allow passage of air to surface being insulated.
- D. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications. Seal with manufacturer's recommended adhesive.
 - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge.
- E. Where metal jackets are indicated, install with 2-inch overlap at longitudinal seams and end joints. Overlap longitudinal seams arranged to shed water. Seal end joints with weatherproof sealant recommended by insulation manufacturer. Secure jacket with stainless-steel bands 12 inches o.c. and at end joints.

3.10 INSTALLATION OF DUCT, ACCESSORIES, AND AIR OUTLETS

- A. Where installing ductwork adjacent to equipment, allow space for service and maintenance.
- B. Comply with requirements for metal ducts specified in Section 233113 "Metal Ducts."
- C. Comply with requirements for air duct accessories specified in Section 233300 "Air Duct Accessories."

- D. Comply with requirements for flexible ducts specified in Section 233346 "Flexible Ducts."
- E. Comply with requirements for air diffusers specified in Section 233713.13 "Air Diffusers."
- F. Comply with requirements for registers and grilles specified in Section 233713.23 "Registers and Grilles."

3.11 ELECTRICAL INSTALLATION

- A. Comply with requirements indicated on Drawings and in applicable Division 26 Sections.
- B. To extent electrical power is required for system equipment, components, and controls, and is not indicated on Drawings and addressed in the Specifications, the design for such electrical power shall be delegated to VRF HVAC system provider.
 - 1. Delegated design of electrical power to equipment, components and controls, and associated installation shall be included at no additional cost to Owner.
- C. Connect field electrical power source to each separate electrical device requiring field electrical power. Coordinate termination point and connection type with Installer.
- D. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.
- E. Comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems" for grounding connections.
- F. Install nameplate or acrylic label with self-adhesive back for each electrical connection indicating electrical equipment designation and circuit number feeding connection.
 - 1. Nameplate shall be laminated phenolic layers of black with engraved white letters. Letters at least 1/2 inch high.
 - 2. Locate nameplate or label where easily visible.
- G. Comply with requirements in Section 260533 "Raceways and Boxes for Electrical Systems" for raceway selection and installation requirements for boxes, conduits, and wireways as supplemented or revised in this Section.
 - 1. Outlet boxes shall be no smaller than 2 inches wide, 3 inches high, and 2-1/2 inches deep.
 - 2. Outlet boxes for cables shall be no smaller than 4 inches square by 2-1/8 inches deep with extension ring sized to bring edge of ring to within 1/8 inch of the finished wall surface.
 - 3. Flexible metal conduit shall not be used.
- H. Comply with TIA-569-D for pull-box sizing and length of conduit and number of bends between pull points.
- I. Install manufactured conduit sweeps and long-radius elbows if possible.

J. Install metal conduits with grounding bushings and connect with grounding conductor to grounding system.

3.12 SOFTWARE

A. Cybersecurity:

1. Software:

- a. Coordinate security requirements with CIO.
- b. Ensure that latest stable software release is installed and properly operating.
- c. Disable or change default passwords to password using a combination of uppercase and lower letters, numbers, and symbols at least eight characters in length. Record passwords and turn over to party responsible for system operation and administration.

2. Hardware:

- a. Coordinate location and access requirements with CIO.
- b. Enable highest level of wireless encryption that is compatible with Owner's ICT network.
- c. Disable dual network connections.

3.13 INSTALLATION OF SYSTEM CONTROL CABLE

- A. Comply with NECA 1.
- B. Installation Method:
 - 1. Install cables in raceways except as follows:
 - a. Within equipment and associated control enclosures.
 - b. In accessible ceiling spaces where open cable installation method may be used.
 - c. In gypsum board partitions where cable may be enclosed within wall cavity.
 - 2. Conceal raceway and cables except in unfinished spaces.

C. General Requirements for Cabling:

- 1. Comply with TIA-568-C Series of standards.
- 2. Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems."
- 3. Terminate all conductors; no cable shall contain unterminated elements. Make terminations only at indicated outlets, terminals, and cross-connect and patch panels.
- 4. Cables may not be spliced and shall be continuous from terminal to terminal. Do not splice cable.
- 5. Cables serving a common system may be grouped in a common raceway. Install control cable in separate raceway from power wiring. Do not group conductors from different systems or different voltages.

- 6. Secure and support cables at intervals not exceeding 30 inches and not more than 6 inches from cabinets, boxes, fittings, outlets, racks, frames, and terminals.
- 7. Bundle, lace, and train conductors to terminal points without exceeding manufacturer's limitations on bending radii, but not less than radii specified in BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Install lacing bars and distribution spools.
- 8. Do not install bruised, kinked, scored, deformed, or abraded cable. Remove and discard cable if damaged during installation and replace it with new cable.
- 9. Cold-Weather Installation: Bring cable to room temperature before dereeling. Do not use heat lamps for heating.
- 10. Pulling Cable: Comply with BICSI ITSIMM, Ch. 5, "Copper Structured Cabling Systems." Monitor cable pull tensions.
- 11. Support: Do not allow cables to lie on removable ceiling tiles or access panels.
- 12. Secure: Fasten securely in place with hardware specifically designed and installed so as to not damage cables.
- 13. Provide strain relief.
- 14. Keep runs short. Allow extra length for connecting to terminals.
- 15. Do not bend cables in a radius less than 10 times the cable OD.
- 16. Use sleeves or grommets to protect cables from vibration at points where they pass around sharp corners and through penetrations.
- 17. Ground wire shall be copper, and grounding methods shall comply with IEEE C2. Demonstrate ground resistance.

D. Balanced Twisted-Pair Cable Installation:

- 1. Comply with TIA-568-C.2.
- 2. Do not untwist balanced twisted-pair cables more than 1/2 inch at the point of termination to maintain cable geometry.

E. Open-Cable Installation:

- 1. Suspend copper cable not in a wireway or pathway a minimum of 8 inches above ceilings by cable supports not more than 30 inches apart.
- 2. Cable shall not be run through or on structural members or in contact with pipes, ducts, or other potentially damaging items. Do not run cables between structural members and corrugated panels.
- F. Separation from EMI Sources: Comply with BICSI TDMM and TIA-569-D recommendations for separating unshielded cable from potential EMI sources including electrical power wiring and equipment.

3.14 FIRESTOPPING

- A. Comply with requirements in Section 078413 "Penetration Firestopping."
- B. Comply with TIA-569-D, Annex A, "Firestopping."
- C. Comply with BICSI TDMM, "Firestopping" Chapter.

3.15 GROUNDING INSTALLATION

- A. For data communication wiring, comply with TIA-607-B and with BICSI TDMM, "Bonding and Grounding (Earthing)" Chapter.
- B. For low-voltage control cabling, comply with requirements in Section 260526 "Grounding and Bonding for Electrical Systems."

3.16 IDENTIFICATION

- A. Identify system equipment, piping, tubing, and valves. Comply with requirements for identification specified in Section 230553 "Identification for HVAC Piping and Equipment."
- B. Identify system electrical and controls components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
 - 1. Identify each control cable on each end and at each terminal with a number-coded identification tag. Each cable shall have a unique tag.

3.17 FIELD QUALITY CONTROL

- A. Manufacturer's Field Service: Engage VRF HVAC system manufacturer's service representative to advise and assist installers; witness testing; and observe and inspect components, assemblies, and equipment installations, including controls and connections.
 - 1. Field service shall be performed by an employee or a factory-trained and -authorized service representative of VRF HVAC system manufacturer whose primary job responsibilities are to provide direct technical support of its products.
 - a. Additional factory-authorized representatives may assist with completion of certain activities only if supervised by manufacturer's employee. A factory-authorized representative shall not provide assistance without manufacturer's employee supervision.
 - 2. Manufacturer shall provide on-site visits during the course of construction at installation milestones indicated. System Installer shall coordinate each visit in advance to give manufacturer sufficient notice to plan the visit.
 - a. First Visit: Kick-off meeting.
 - b. Second Visit: At approximately 25 percent completion of system(s).
 - c. Third Visit: At approximately 50 percent completion of system(s).
 - d. Fourth Visit: At approximately 75 percent completion of system(s).
 - e. Fifth Visit: Final inspection before system startup.
 - 3. Kick-off Meeting:

- a. Meeting shall include system Installer and other related trades with sole purpose of reviewing VRF HVAC system installation requirements and close coordination required to make a successful installation.
- b. Meeting shall be held at Project site and scheduled at a mutually agreed to time that occurs before the start of any part of system installation.
- c. Meeting shall cover the following as a minimum requirement:
 - 1) Review of latest issue of Contract Documents, Drawings, and Specifications, relevant to VRF HVAC systems.
 - 2) Manufacturer's installation requirements specific to systems being installed.
 - 3) Review of all relevant VRF HVAC system submittals, including delegated-design submittals.
 - 4) Required field activities related installation of VRF HVAC system.
 - 5) Project team communication protocol, contact information, and exchange of responsibilities for each party involved, including manufacturer, supplier, system Installer, and other related trades.
- 4. Site Visits: Activities for each site visit shall include the following:
 - a. Meet with VRF HVAC system Installer to discuss field activities, issues, and suggested methods to result in a successful installation.
 - b. Offer technical support to Installer and related trades as related to VRF system(s) being installed.
 - c. Review progress of VRF HVAC system(s) installation for strict compliance with manufacturer's requirements.
 - d. Advise and if necessary assist Installer with updating related refrigerant calculations and system documentation.
 - e. Issue a report for each visit, documenting the visit.
 - 1) Report to include name and contact information of individual making the visit.
 - 2) Date(s) and time frames while on-site.
 - 3) Names and contact information of people meeting with while on-site.
 - 4) Clearly identify and list each separate issue that requires resolution. For each issue, provide a unique identification number, relevant importance, specific location or equipment identification, description of issue, recommended corrective action, and follow-up requirements needed. Include a digital photo for clarification if deemed to be beneficial.

5. Final Inspection before Startup:

- a. Before inspection, Installer to provide written request to manufacturer stating the system is fully installed according manufacturer's requirements and ready for final inspection.
- b. All system equipment and operating components shall be inspected. If components are inaccessible for inspection, they shall be made accessible before the final inspection can be completed.
- c. Manufacturer shall provide a comprehensive inspection of all equipment and each operating component that comprise the complete system(s). Inspection shall follow a detailed checklist specific to each equipment and operating component.

- d. Inspection reports for indoor units shall include, but not be limited to, the following:
 - 1) Unit designation on Drawings.
 - 2) Manufacturer model number.
 - 3) Serial number.
 - 4) Network address, if applicable.
 - 5) Each equipment setting.
 - 6) Mounting, supports, and restraints properly installed.
 - 7) Proper service clearance provided.
 - 8) Wiring and power connections correct.
 - 9) Line-voltage reading(s) within acceptable range.
 - 10) Wiring and controls connections correct.
 - 11) Low-voltage reading(s) within an acceptable range.
 - 12) Controller type and model controlling unit.
 - 13) Controller location.
 - 14) Temperature settings and readings within an acceptable range.
 - 15) Humidity settings and readings within an acceptable range.
 - 16) Condensate removal acceptable.
 - 17) Fan settings and readings within an acceptable range.
 - 18) Unit airflow direction within an acceptable range.
 - 19) If applicable, fan external static pressure setting.
 - 20) Filter type and condition acceptable.
 - 21) Noise level within an acceptable range.
 - 22) Refrigerant piping properly connected and insulated.
 - 23) Condensate drain piping properly connected and insulated.
 - 24) If applicable, ductwork properly connected.
 - 25) If applicable, external interlocks properly connected.
 - 26) Remarks.
- e. Inspection reports for outdoor units shall include, but not be limited to, the following:
 - 1) Unit designation on Drawings.
 - 2) Manufacturer model number.
 - 3) Serial number.
 - 4) Network address, if applicable.
 - 5) Each equipment setting.
 - 6) Mounting, supports, and restraints properly installed.
 - 7) Proper service clearance provided.
 - 8) Wiring and power connections correct.
 - 9) Line-voltage reading(s) within acceptable range.
 - 10) Wiring and controls connections correct.
 - 11) Low-voltage reading(s) within an acceptable range.
 - 12) Condensate removal acceptable.
 - 13) Noise level within an acceptable range.
 - 14) Refrigerant piping properly connected and insulated.
 - 15) Condensate drain piping properly connected and insulated.
 - 16) Remarks.

- f. Installer shall provide manufacturer with the requested documentation and technical support during inspection.
- g. Installer shall correct observed deficiencies found by the inspection.
- h. Upon completing the on-site inspection, manufacturer shall provide a written report with complete documentation describing each inspection step, the result, and any corrective action required.
- i. If corrective action is required by Installer that cannot be completed during the same visit, provide additional visits, as required, until deficiencies are resolved and systems are deemed ready for startup.
- j. Final report shall indicate the system(s) inspected are installed according to manufacturer's requirements and are ready for startup.
- B. Perform the following tests and inspections with the assistance of manufacturer's service representative:
 - 1. Perform each visual and mechanical inspection and electrical test stated in NETA Acceptance Testing Specification. Certify compliance with test parameters.
 - 2. Leak Test: After installation, charge system and test for leaks. Repair leaks and retest until no leaks exist.
 - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
 - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- C. Refrigerant Tubing Positive Pressure Testing:
 - 1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
 - 2. After completion of tubing installation, pressurize tubing systems to a test pressure of not less than 1.5 times VRF HVAC system operating pressure, but not less than 600 psig, using dry nitrogen.
 - 3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of 24 hours. Allowance for pressure changes attributed to changes in ambient temperature are acceptable.
 - 4. Prepare test report to record the following information for each test:
 - a. Name of person starting test, company name, phone number, and e-mail address.
 - b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 - c. Detailed description of extent of tubing tested.
 - d. Date and time at start of test.
 - e. Test pressure at start of test.
 - f. Outdoor temperature at start of test.
 - g. Name of person ending test, company name, phone number, and e-mail address.
 - h. Date and time at end of test.
 - i. Test pressure at end of test.
 - j. Outdoor temperature at end of test.
 - k. Remarks:
 - 5. Submit test reports for Project record.

D. Refrigerant Tubing Evacuation Testing:

- 1. Comply with more stringent of VRF HVAC system manufacturer's requirements and requirements indicated.
- 2. After completion of tubing positive-pressure testing, evacuate tubing systems to a pressure of 500 microns.
- 3. Successful testing shall maintain a test pressure for a continuous and uninterrupted period of one hour(s) with no change.
- 4. Prepare test report to record the following information for each test:
 - a. Name of person starting test, company name, phone number, and e-mail address.
 - b. Name of manufacturer's service representative witnessing test, company name, phone number, and e-mail address.
 - c. Detailed description of extent of tubing tested.
 - d. Date and time at start of test.
 - e. Test pressure at start of test.
 - f. Outdoor temperature at start of test.
 - g. Name of person ending test, company name, phone number, and e-mail address.
 - h. Date and time at end of test.
 - i. Test pressure at end of test.
 - j. Outdoor temperature at end of test.
 - k. Remarks:
- 5. Submit test reports for Project record.
- 6. Upon successful completion of evacuation testing, system shall be charged with refrigerant.

E. System Refrigerant Charge:

- 1. Using information collected from the refrigerant tubing evacuation testing, system Installer shall consult variable refrigerant system manufacturer to determine the correct system refrigerant charge.
- 2. Installer shall charge system following VRF HVAC system manufacturer's written instructions.
- 3. System refrigerant charging shall be witnessed by system manufacturer's representative.
- 4. Total refrigerant charge shall be recorded and permanently displayed at the system's outdoor unit.
- F. Products will be considered defective if they do not pass tests and inspections.
- G. Prepare test and inspection reports.

3.18 STARTUP SERVICE

- A. Engage a VRF HVAC system manufacturer's service representative to perform system(s) startup service.
 - 1. Service representative shall be an employee or a factory-trained and -authorized service representative of VRF HVAC system manufacturer.

- 2. Complete startup service of each separate system.
- 3. Complete system startup service according to manufacturer's written instructions.
- B. Startup checks shall include, but not be limited to, the following:
 - 1. Check control communications of equipment and each operating component in system(s).
 - 2. Check each indoor unit's response to demand for cooling and heating.
 - 3. Check each indoor unit's response to changes in airflow settings.
 - 4. Check each indoor unit, HRCU, and outdoor unit for proper condensate removal.
- C. Installer shall accompany manufacturer's service representative during startup service and provide manufacturer's service representative with requested documentation and technical support during startup service.
 - 1. Installer shall correct deficiencies found during startup service for reverification.

D. System Operation Report:

- 1. After completion of startup service, manufacturer shall issue a report for each separate system.
- 2. Report shall include complete documentation describing each startup check, the result, and any corrective action required.
- 3. Manufacturer shall electronically record not less than two hours of continuous operation of each system and submit with report for historical reference.
 - a. All available system operating parameters shall be included in the information submitted.

E. Witness:

- 1. Invite Architect and Owner to witness startup service procedures.
- 2. Provide written notice not less than 20 business days before start of startup service.

3.19 ADJUSTING

- A. Adjust equipment and components to function smoothly, and lubricate as recommended by manufacturer.
- B. Adjust initial temperature and humidity set points. Adjust initial airflow settings and discharge airflow patterns.
- C. Set field-adjustable switches and circuit-breaker trip ranges according to VRF HVAC system manufacturer's written instructions, and as indicated.

3.20 PROTECTION

A. Protect products from moisture and water damage. Remove and replace products that are wet, moisture damaged, or mold damaged.

- B. Protect equipment from physical damage. Replace equipment with physical damage that cannot be repaired to new condition. Observable surface imperfections shall be grounds for removal and replacement.
- C. Protect equipment from electrical damage. Replace equipment suffering electrical damage.
- D. Cover and seal openings of equipment to keep inside of equipment clean. Do not remove covers until finish work is complete.

3.21 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.
 - 1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.22 DEMONSTRATION

A. Engage a VRF HVAC system manufacturer's employed training instructor or factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain entire system.

B. Instructor:

- 1. Instructor shall be factory trained and certified by VRF HVAC system manufacturer with current training on the system(s), equipment, and controls that are installed.
- 2. Instructor's credentials shall be submitted for review by Architect before scheduling training.
- 3. Instructor(s) primary job responsibility shall be Owner training.
- 4. Instructor(s) shall have not less than three years of training experience with VRF HVAC system manufacturer and past training experience on at least three projects of comparable size and complexity.

C. Schedule and Duration:

- 1. Schedule training with Owner at least 20 business days before first training session.
- 2. Training shall occur before Owner occupancy.
- 3. Training shall be held at mutually agreed date and time during normal business hours.
- 4. Each training day shall not exceed eight hours of training. Daily training schedule shall allow time for one-hour lunch period and 15-minute break after every two hours of training.
- 5. Perform not less than eight total hours of training.

- D. Location: Owner shall provide a suitable on-site location to host classroom training.
- E. Training Attendees: Assume three people.
- F. Training Attendance: For record purposes, document training attendees at the start of each new training session. Record attendee's name, signature, phone number, and e-mail address.
- G. Training Format: Individual training modules shall include classroom training followed by hands-on field demonstration and training.
- H. Training Materials: Provide training materials in electronic format to each attendee.
 - 1. Include instructional videos showing general operation and maintenance that are coordinated with operation and maintenance manuals.
 - 2. Video record each classroom training session and submit an electronic copy to Owner before requesting Owner acceptance of training.
- I. Acceptance: Obtain Owner written acceptance that training is complete and requirements indicated have been satisfied.

END OF SECTION 238129

SECTION 238239.13 - CABINET UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes cabinet unit heaters with centrifugal fans and electric-resistance heating coils.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. DDC: Direct digital control.
- C. PTFE: Polytetrafluoroethylene plastic.
- D. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For cabinet unit heaters to include in emergency, operation, and maintenance manuals.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Cabinet Unit-Heater Filters: Furnish one spare filter(s) for each filter installed.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Trane.

2.2 DESCRIPTION

- A. Factory-assembled and -tested unit complying with AHRI 440.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 2021.

2.3 PERFORMANCE REQUIREMENTS

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

2.4 COIL SECTION INSULATION

- A. Insulation Materials: Comply with NFPA 90A or NFPA 90B. Unicellular polyethylene thermal plastic, preformed sheet insulation complying with ASTM C 534, Type II, except for density.
 - 1. Thickness: 3/8 inch.
 - 2. Thermal Conductivity (k-Value): 0.24 Btu x in./h x sq. ft. at 75 deg F mean temperature.
 - 3. Fire-Hazard Classification: Maximum flame-spread index of 25 and smoke-developed index of 50 when tested according to ASTM C 411.
 - 4. Adhesive: As recommended by insulation manufacturer and complying with NFPA 90A or NFPA 90B.
 - 5. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.

2.5 CABINETS

A. Material: Steel with baked-enamel finish with manufacturer's standard paint, in color selected by Architect.

- 1. Vertical Unit, Exposed Front Panels: Minimum 0.0528-inch-thick galvanized sheet steel, removable panels with channel-formed edges secured with tamperproof cam fasteners.
- 2. Control Access Door: Key operated.
- 3. Base: Minimum 0.0528-inch-thick steel, finished to match cabinet, 4 inches high with leveling bolts.
- 4. False Back: Minimum 0.0428-inch-thick steel, finished to match cabinet.

2.6 FILTERS

- A. Minimum Arrestance: And a minimum efficiency reporting value (MERV) according to ASHRAE 52.2.
 - 1. Washable Foam: 70 percent arrestance and MERV 3.
 - 2. Glass Fiber Treated with Adhesive: 80 percent arrestance and MERV 5.
 - 3. Pleated: 90 percent arrestance and MERV 7.

2.7 COILS

A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and hum, mounted in ceramic inserts in galvanized-steel housing; with fuses in terminal box for overcurrent protection and limit controls for high-temperature protection. Terminate elements in stainless-steel machine-staked terminals secured with stainless-steel hardware.

2.8 CONTROLS

- A. Fan and Motor Board: Removable.
 - 1. Fan: Forward curved, double width, centrifugal, directly connected to motor; thermoplastic or painted-steel wheels and aluminum, painted-steel, or galvanized-steel fan scrolls.
 - 2. Motor: Permanently lubricated, multispeed; resiliently mounted on motor board. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."
 - 3. Wiring Terminations: Connect motor to chassis wiring with plug connection.

B. Basic Unit Controls:

- 1. Control voltage transformer.
- 2. Unit-mounted thermostat with the following features:
 - a. Heat-off switch.
 - b. Fan on-auto switch.
 - c. Manual fan-speed switch.
 - d. Adjustable deadband.
 - e. Exposed set point.
 - f. Exposed indication.
 - g. Deg F indication.

- 3. Unit-mounted temperature sensor.
- 4. Unoccupied period override push button.
- 5. Data entry and access port.
 - a. Input data includes room temperature and occupied and unoccupied periods.
 - b. Output data includes room temperature, supply-air temperature, entering-water temperature, operating mode, and status.
- C. Electrical Connection: Factory-wired motors and controls for a single field connection.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive cabinet unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install wall boxes in finished wall assembly; seal and weatherproof. Joint-sealant materials and applications are specified in Section 079200 "Joint Sealants."
- B. Install cabinet unit heaters to comply with NFPA 90A.
- C. Install new filters in each fan-coil unit within two weeks of Substantial Completion.

3.3 CONNECTIONS

- A. Install piping adjacent to machine to allow service and maintenance.
- B. Comply with safety requirements in UL 1995.
- C. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- D. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

- 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
- 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain cabinet unit heaters.

END OF SECTION 238239.13

SECTION 238239.16 - PROPELLER UNIT HEATERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes propeller unit heaters with electric-resistance heating coils.

1.3 DEFINITIONS

- A. CWP: Cold working pressure.
- B. PTFE: Polytetrafluoroethylene plastic.
- C. TFE: Tetrafluoroethylene plastic.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include rated capacities, operating characteristics, furnished specialties, and accessories.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For propeller unit heaters to include in emergency, operation, and maintenance manuals.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Trane.

2.2 DESCRIPTION

- A. Assembly including casing, coil, fan, and motor in horizontal discharge configuration with adjustable discharge louvers.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Comply with UL 2021.
- D. Comply with UL 823.

2.3 PERFORMANCE REQUIREMENTS

- A. ASHRAE Compliance: Applicable requirements in ASHRAE 62.1, Section 5 "Systems and Equipment" and Section 7 "Construction and Startup."
- B. ASHRAE/IESNA 90.1 Compliance: Applicable requirements in ASHRAE/IESNA 90.1, Section 6 "Heating, Ventilating, and Air-Conditioning."

2.4 HOUSINGS

- A. Finish: Manufacturer's standard baked enamel applied to factory-assembled and -tested propeller unit heaters before shipping.
- B. Airstream Surfaces: Surfaces in contact with the airstream shall comply with requirements in ASHRAE 62.1.
- C. Discharge Louver: Adjustable fin diffuser for horizontal units and conical diffuser for vertical units.

2.5 COILS

- A. Electric-Resistance Heating Coil: Nickel-chromium heating wire, free from expansion noise and 60-Hz hum, embedded in magnesium oxide refractory and sealed in steel or corrosion-resistant metallic sheath with fins no closer than 0.16 inch. Element ends shall be enclosed in terminal box. Fin surface temperature shall not exceed 550 deg F at any point during normal operation.
 - 1. Circuit Protection: One-time fuses in terminal box for overcurrent protection and limit controls for high-temperature protection of heaters.
 - 2. Wiring Terminations: Stainless-steel or corrosion-resistant material.

2.6 FAN AND MOTOR

A. Fan: Propeller type with aluminum wheel directly mounted on motor shaft in the fan venturi.

B. Motor: Permanently lubricated. Comply with requirements in Section 230513 "Common Motor Requirements for HVAC Equipment."

2.7 CONTROLS

- A. Control Devices:
 - 1. Unit-mounted thermostat.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine areas to receive propeller unit heaters for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for electrical connections to verify actual locations before unit-heater installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Install propeller unit heaters to comply with NFPA 90A.
- B. Install propeller unit heaters level and plumb.
- C. Suspend propeller unit heaters from structure with all-thread hanger rods and elastomeric hangers. Hanger rods and attachments to structure are specified in Section 230529 "Hangers and Supports for HVAC Piping and Equipment."

3.3 CONNECTIONS

- A. Comply with safety requirements in UL 1995.
- B. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- C. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

3.4 FIELD QUALITY CONTROL

A. Perform the following tests and inspections:

- 1. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation.
- 2. Operate electric heating elements through each stage to verify proper operation and electrical connections.
- 3. Test and adjust controls and safety devices. Replace damaged and malfunctioning controls and equipment.
- B. Units will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.5 ADJUSTING

A. Adjust initial temperature set points.

3.6 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain propeller unit heaters.

END OF SECTION 238239.16

SECTION 260519 - LOW-VOLTAGE ELECTRICAL POWER CONDUCTORS AND CABLES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Copper building wire rated 600 V or less.
- 2. Metal-clad cable, Type MC, rated 600 V or less.
- 3. Connectors, splices, and terminations rated 600 V and less.

B. Related Requirements:

1. Section 260523 "Control-Voltage Electrical Power Cables" for control systems communications cables and Classes 1, 2, and 3 control cables.

1.3 DEFINITIONS

A. VFC: Variable-frequency controller.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 COPPER BUILDING WIRE

A. Description: Flexible, insulated and uninsulated, drawn copper current-carrying conductor with an overall insulation layer or jacket, or both, rated 600 V or less.

- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Belden Inc.
 - 2. Okonite Company (The).
 - 3. Southwire Company.

C. Standards:

- 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- 2. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."
- D. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.

E. Conductor Insulation:

- 1. Type NM: Comply with UL 83 and UL 719.
- 2. Type RHH and Type RHW-2: Comply with UL 44.
- 3. Type TC-ER: Comply with NEMA WC 70/ICEA S-95-658 and UL 1277.
- 4. Type THHN and Type THWN-2: Comply with UL 83.
- 5. Type THW and Type THW-2: Comply with NEMA WC-70/ICEA S-95-658 and UL 83.
- 6. Type XHHW-2: Comply with UL 44.

F. Shield:

1. Type TC-ER: Cable designed for use with VFCs, with oversized crosslinked polyethylene insulation, spiral-wrapped foil plus 85 percent coverage braided shields and insulated full-size ground wire, and sunlight- and oil-resistant outer PVC jacket.

2.2 METAL-CLAD CABLE, TYPE MC

- A. Description: A factory assembly of one or more current-carrying insulated conductors in an overall metallic sheath.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. AFC Cable Systems; a part of Atkore International.
 - 2. Belden Inc.
 - 3. Southwire Company.

C. Standards:

1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.

- 2. Comply with UL 1569.
- 3. Conductor and Cable Marking: Comply with wire and cable marking according to UL's "Wire and Cable Marking and Application Guide."

D. Circuits:

- 1. Single circuit and multicircuit with color-coded conductors.
- 2. Power-Limited Fire-Alarm Circuits: Comply with UL 1424.
- E. Conductors: Copper, complying with ASTM B 3 for bare annealed copper and with ASTM B 8 for stranded conductors.
- F. Ground Conductor: Bare.
- G. Conductor Insulation:
 - 1. Type TFN/THHN/THWN-2: Comply with UL 83.
 - 2. Type XHHW-2: Comply with UL 44.
- H. Armor: Steel, interlocked.

2.3 CONNECTORS AND SPLICES

- A. Description: Factory-fabricated connectors, splices, and lugs of size, ampacity rating, material, type, and class for application and service indicated; listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. 3M Electrical Products.
 - 2. O-Z/Gedney; a brand of Emerson Industrial Automation.
 - 3. Thomas & Betts Corporation; A Member of the ABB Group.
- C. Lugs: One piece, seamless, designed to terminate conductors specified in this Section.
 - 1. Material: Copper.
 - 2. Type: One or Two hole with standard barrels.
 - 3. Termination: Compression.

PART 3 - EXECUTION

3.1 CONDUCTOR MATERIAL APPLICATIONS

A. Feeders: Copper; solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.

- B. Branch Circuits: Copper. Solid for No. 10 AWG and smaller; stranded for No. 8 AWG and larger.
- C. VFC Output Circuits Cable: Extra-flexible stranded for all sizes.

3.2 CONDUCTOR INSULATION AND MULTICONDUCTOR CABLE APPLICATIONS AND WIRING METHODS

- A. Service Entrance: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- B. Exposed Feeders: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- C. Feeders Concealed in Ceilings, Walls, Partitions, and Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- D. Feeders Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.
- E. Exposed Branch Circuits, Including in Crawlspaces: Type THHN/THWN-2, single conductors in raceway.
- F. Branch Circuits Concealed in Ceilings, Walls, and Partitions: Metal-clad cable, Type MC.
- G. Branch Circuits Concealed in Concrete, below Slabs-on-Grade, and Underground: Type THHN/THWN-2, single conductors in raceway or Type XHHW-2, single conductors in raceway.

3.3 INSTALLATION OF CONDUCTORS AND CABLES

- A. Conceal cables in finished walls, ceilings, and floors unless otherwise indicated.
- B. Complete raceway installation between conductor and cable termination points according to Section 260533 "Raceways and Boxes for Electrical Systems" prior to pulling conductors and cables.
- C. Use manufacturer-approved pulling compound or lubricant where necessary; compound used must not deteriorate conductor or insulation. Do not exceed manufacturer's recommended maximum pulling tensions and sidewall pressure values.
- D. Use pulling means, including fish tape, cable, rope, and basket-weave wire/cable grips that will not damage cables or raceway.
- E. Install exposed cables parallel and perpendicular to surfaces of exposed structural members, and follow surface contours where possible.

F. Support cables according to Section 260529 "Hangers and Supports for Electrical Systems."

3.4 CONNECTIONS

- A. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- B. Make splices, terminations, and taps that are compatible with conductor material.
- C. Wiring at Outlets: Install conductor at each outlet, with at least 6 inches (150 mm) of slack.

3.5 IDENTIFICATION

- A. Identify and color-code conductors and cables according to Section 260553 "Identification for Electrical Systems."
- B. Identify each spare conductor at each end with identity number and location of other end of conductor, and identify as spare conductor.

3.6 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.7 FIRESTOPPING

A. Apply firestopping to electrical penetrations of fire-rated floor and wall assemblies to restore original fire-resistance rating of assembly according to Section 078413 "Penetration Firestopping."

3.8 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
 - 1. After installing conductors and cables and before electrical circuitry has been energized, test service entrance and feeder conductors for compliance with requirements.
 - 2. Perform each of the following visual and electrical tests:
 - a. Inspect exposed sections of conductor and cable for physical damage and correct connection according to the single-line diagram.
 - b. Test bolted connections for high resistance using one of the following:
 - 1) A low-resistance ohmmeter.
 - 2) Calibrated torque wrench.
 - 3) Thermographic survey.

- c. Inspect compression-applied connectors for correct cable match and indentation.
- d. Inspect for correct identification.
- e. Inspect cable jacket and condition.
- f. Insulation-resistance test on each conductor for ground and adjacent conductors. Apply a potential of 500-V dc for 300-V rated cable and 1000-V dc for 600-V rated cable for a one-minute duration.
- g. Continuity test on each conductor and cable.
- h. Uniform resistance of parallel conductors.
- B. Cables will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports to record the following:
 - 1. Procedures used.
 - 2. Results that comply with requirements.
 - 3. Results that do not comply with requirements, and corrective action taken to achieve compliance with requirements.

END OF SECTION 260519

SECTION 260526 - GROUNDING AND BONDING FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section includes grounding and bonding systems and equipment.
- B. Section includes grounding and bonding systems and equipment.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product indicated.

1.4 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with UL 467 for grounding and bonding materials and equipment.

2.2 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Burndy; Part of Hubbell Electrical Systems.
 - 2. ERICO International Corporation.
 - 3. O-Z/Gedney; a brand of Emerson Industrial Automation.

2.3 CONDUCTORS

A. Bare Copper Conductors:

- 1. Solid Conductors: ASTM B 3.
- 2. Stranded Conductors: ASTM B 8.
- 3. Tinned Conductors: ASTM B 33.
- 4. Bonding Cable: 28 kcmil, 14 strands of No. 17 AWG conductor, 1/4 inch in diameter.
- 5. Bonding Conductor: No. 4 or No. 6 AWG, stranded conductor.
- 6. Bonding Jumper: Copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- 7. Tinned Bonding Jumper: Tinned-copper tape, braided conductors terminated with copper ferrules; 1-5/8 inches wide and 1/16 inch thick.
- B. Grounding Bus: Predrilled rectangular bars of annealed copper, 1/4 by 4 inches in cross section, with 9/32-inch holes spaced 1-1/8 inches apart. Bus shall be 24" long. Stand-off insulators for mounting shall comply with UL 891 for use in switchboards, 600 V and shall be Lexan or PVC, impulse tested at 5000 V.

2.4 CONNECTORS

- A. Listed and labeled by an NRTL acceptable to authorities having jurisdiction for applications in which used and for specific types, sizes, and combinations of conductors and other items connected.
- B. Welded Connectors: Exothermic-welding kits of types recommended by kit manufacturer for materials being joined and installation conditions.
- C. Bus-Bar Connectors: Mechanical type, cast silicon bronze, solderless compression-type wire terminals, and long-barrel, two-bolt connection to ground bus bar.
- D. Bus-Bar Connectors: Compression type, copper or copper alloy, with two wire terminals.
- E. Beam Clamps: Mechanical type, terminal, ground wire access from four directions, with dual, tin-plated or silicon bronze bolts.
- F. Cable-to-Cable Connectors: Compression type, copper or copper alloy.
- G. Cable Tray Ground Clamp: Mechanical type, zinc-plated malleable iron.
- H. Conduit Hubs: Mechanical type, terminal with threaded hub.
- I. Ground Rod Clamps: Mechanical type, copper or copper alloy, terminal with hex head bolt.
- J. Service Post Connectors: Mechanical type, bronze alloy terminal, in short- and long-stud lengths, capable of single and double conductor connections.
- K. Straps: Solid copper, copper lugs. Rated for 600 A.

L. Water Pipe Clamps:

- 1. Mechanical type, two pieces with zinc-plated bolts.
 - a. Material: Tin-plated aluminum.
 - b. Listed for direct burial.
- 2. U-bolt type with malleable-iron clamp and copper ground connector.

2.5 GROUNDING ELECTRODES

A. Ground Rods: Copper-clad steel; 3/4 inch by 10 feet.

PART 3 - EXECUTION

3.1 APPLICATIONS

- A. Conductors: Install solid conductor for No. 8 AWG and smaller, and stranded conductors for No. 6 AWG and la rger unless otherwise indicated.
- B. Underground Grounding Conductors: Install bare copper conductor, No. 2/0 AWG minimum.
 - 1. Bury at least 24 inches below grade.
 - 2. Duct-Bank Grounding Conductor: Bury 12 inches above duct bank when indicated as part of duct-bank installation.
- C. Isolated Grounding Conductors: Green-colored insulation with continuous yellow stripe. On feeders with isolated ground, identify grounding conductor where visible to normal inspection, with alternating bands of green and yellow tape, with at least three bands of green and two bands of yellow.
- D. Grounding Bus: Install in electrical equipment rooms, in rooms housing service equipment, and elsewhere as indicated.
 - 1. Install bus horizontally, on insulated spacers 2 inches minimum from wall, 6 inches above finished floor unless otherwise indicated.
 - 2. Where indicated on both sides of doorways, route bus up to top of door frame, across top of doorway, and down; connect to horizontal bus.

E. Conductor Terminations and Connections:

- 1. Pipe and Equipment Grounding Conductor Terminations: Bolted connectors.
- 2. Underground Connections: Welded connectors except at test wells and as otherwise indicated.
- 3. Connections to Ground Rods at Test Wells: Bolted connectors.
- 4. Connections to Structural Steel: Welded connectors.

3.2 GROUNDING AT THE SERVICE

A. Equipment grounding conductors and grounding electrode conductors shall be connected to the ground bus. Install a main bonding jumper between the neutral and ground buses.

3.3 GROUNDING UNDERGROUND DISTRIBUTION SYSTEM COMPONENTS

- A. Comply with IEEE C2 grounding requirements.
- B. Pad-Mounted Transformers and Switches: Install two ground rods and ground ring around the pad. Ground pad-mounted equipment and noncurrent-carrying metal items associated with substations by connecting them to underground cable and grounding electrodes. Install tinned-copper conductor not less than No. 2 AWG for ground ring and for taps to equipment grounding terminals. Bury ground ring not less than 6 inches from the foundation.

3.4 EQUIPMENT GROUNDING

A. Install insulated equipment grounding conductors with all feeders and branch circuits.

3.5 INSTALLATION

- A. Grounding Conductors: Route along shortest and straightest paths possible unless otherwise indicated or required by Code. Avoid obstructing access or placing conductors where they may be subjected to strain, impact, or damage.
- B. Ground Rods: Drive rods until tops are 2 inches below finished floor or final grade unless otherwise indicated.
 - 1. Interconnect ground rods with grounding electrode conductor below grade and as otherwise indicated. Make connections without exposing steel or damaging coating if any.
 - 2. Use exothermic welds for all below-grade connections.
- C. Bonding Straps and Jumpers: Install in locations accessible for inspection and maintenance except where routed through short lengths of conduit.
 - 1. Bonding to Structure: Bond straps directly to basic structure, taking care not to penetrate any adjacent parts.
 - 2. Bonding to Equipment Mounted on Vibration Isolation Hangers and Supports: Install bonding so vibration is not transmitted to rigidly mounted equipment.
 - 3. Use exothermic-welded connectors for outdoor locations; if a disconnect-type connection is required, use a bolted clamp.

D. Grounding and Bonding for Piping:

1. Metal Water Service Pipe: Install insulated copper grounding conductors, in conduit, from building's main service equipment, or grounding bus, to main metal water service

entrances to building. Connect grounding conductors to main metal water service pipes; use a bolted clamp connector or bolt a lug-type connector to a pipe flange by using one of the lug bolts of the flange. Where a dielectric main water fitting is installed, connect grounding conductor on street side of fitting. Bond metal grounding conductor conduit or sleeve to conductor at each end.

- 2. Water Meter Piping: Use braided-type bonding jumpers to electrically bypass water meters. Connect to pipe with a bolted connector.
- 3. Bond each aboveground portion of gas piping system downstream from equipment shutoff valve.
- E. Connections: Make connections so possibility of galvanic action or electrolysis is minimized. Select connectors, connection hardware, conductors, and connection methods so metals in direct contact are galvanically compatible.
 - 1. Use electroplated or hot-tin-coated materials to ensure high conductivity and to make contact points closer in order of galvanic series.
 - 2. Make connections with clean, bare metal at points of contact.
 - 3. Make aluminum-to-steel connections with stainless-steel separators and mechanical clamps.
 - 4. Make aluminum-to-galvanized-steel connections with tin-plated copper jumpers and mechanical clamps.
 - 5. Coat and seal connections having dissimilar metals with inert material to prevent future penetration of moisture to contact surfaces.

3.6 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections:
 - 1. After installing grounding system but before permanent electrical circuits have been energized, test for compliance with requirements.
 - 2. Inspect physical and mechanical condition. Verify tightness of accessible, bolted, electrical connections with a calibrated torque wrench according to manufacturer's written instructions.
- C. Grounding system will be considered defective if it does not pass tests and inspections.
- D. Prepare test and inspection reports.
- E. Report measured ground resistances that exceed the following values:
 - 1. Power and Lighting Equipment or System with Capacity of 500 kVA and Less: 10 ohms.
- F. Excessive Ground Resistance: If resistance to ground exceeds specified values, notify Architect promptly and include recommendations to reduce ground resistance.

END OF SECTION 260526

SECTION 260529 - HANGERS AND SUPPORTS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Steel slotted support systems.
- 2. Conduit and cable support devices.
- 3. Mounting, anchoring, and attachment components, including powder-actuated fasteners, mechanical expansion anchors, concrete inserts, clamps, through bolts, toggle bolts, and hanger rods.
- 4. Fabricated metal equipment support assemblies.

B. Related Requirements:

PART 2 - PRODUCTS

2.1 SUPPORT, ANCHORAGE, AND ATTACHMENT COMPONENTS

- A. Steel Slotted Support Systems: Preformed steel channels and angles with minimum 13/32-inch-diameter holes at a maximum of 8 inches o.c. in at least one surface.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. B-line, an Eaton business.
 - b. Thomas & Betts Corporation; A Member of the ABB Group.
 - c. Unistrut; Part of Atkore International.
 - 2. Standard: Comply with MFMA-4 factory-fabricated components for field assembly.
 - 3. Material for Channel, Fittings, and Accessories: Galvanized steel.
 - 4. Channel Width: Selected for applicable load criteria.
 - 5. Metallic Coatings: Hot-dip galvanized after fabrication and applied according to MFMA-4.

- B. Conduit and Cable Support Devices: Steel hangers, clamps, and associated fittings, designed for types and sizes of raceway or cable to be supported.
- C. Structural Steel for Fabricated Supports and Restraints: ASTM A 36/A 36M steel plates, shapes, and bars; black and galvanized.
- D. Mounting, Anchoring, and Attachment Components: Items for fastening electrical items or their supports to building surfaces include the following:
 - 1. Powder-Actuated Fasteners: Threaded-steel stud, for use in hardened portland cement concrete, steel, or wood, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1) Hilti, Inc.
 - 2. Mechanical-Expansion Anchors: Insert-wedge-type, zinc-coated steel, for use in hardened portland cement concrete, with tension, shear, and pullout capacities appropriate for supported loads and building materials where used.
 - a. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1) B-line, an Eaton business.
 - 2) Hilti, Inc.
 - 3. Concrete Inserts: Steel or malleable-iron, slotted support system units are similar to MSS Type 18 units and comply with MFMA-4 or MSS SP-58.
 - 4. Clamps for Attachment to Steel Structural Elements: MSS SP-58 units are suitable for attached structural element.
 - 5. Through Bolts: Structural type, hex head, and high strength. Comply with ASTM A 325.
 - 6. Toggle Bolts: All-steel springhead type.
 - 7. Hanger Rods: Threaded steel.

2.2 FABRICATED METAL EQUIPMENT SUPPORT ASSEMBLIES

- A. Description: Welded or bolted structural-steel shapes, shop or field fabricated to fit dimensions of supported equipment.
- B. Materials: Comply with requirements in Section 055000 "Metal Fabrications" for steel shapes and plates.

PART 3 - EXECUTION

3.1 APPLICATION

- A. Comply with the following standards for application and installation requirements of hangers and supports, except where requirements on Drawings or in this Section are stricter:
 - 1. NECA 1.
 - 2. NECA 101
 - 3. NECA 102.
 - 4. NECA 105.
 - 5. NECA 111.
- B. Comply with requirements in Section 078413 "Penetration Firestopping" for firestopping materials and installation for penetrations through fire-rated walls, ceilings, and assemblies.
- C. Comply with requirements for raceways and boxes specified in Section 260533 "Raceways and Boxes for Electrical Systems."
- D. Maximum Support Spacing and Minimum Hanger Rod Size for Raceways: Space supports for EMT, IMC, and RMC as required by NFPA 70. Minimum rod size shall be 1/4 inch in diameter.
- E. Multiple Raceways or Cables: Install trapeze-type supports fabricated with steel slottedsupport system, sized so capacity can be increased by at least 25 percent in future without exceeding specified design load limits.
 - 1. Secure raceways and cables to these supports with two-bolt conduit clamps or single-bolt conduit clamps.
- F. Spring-steel clamps designed for supporting single conduits without bolts may be used for 1-1/2-inch and smaller raceways serving branch circuits and communication systems above suspended ceilings, and for fastening raceways to trapeze supports.

3.2 SUPPORT INSTALLATION

- A. Comply with NECA 1 and NECA 101 for installation requirements except as specified in this article.
- B. Strength of Support Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static loads within specified loading limits. Minimum static design load used for strength determination shall be weight of supported components plus 200 lb.
- C. Mounting and Anchorage of Surface-Mounted Equipment and Components: Anchor and fasten electrical items and their supports to building structural elements by the following methods unless otherwise indicated by code:

- 1. To Wood: Fasten with lag screws or through bolts.
- 2. To New Concrete: Bolt to concrete inserts.
- 3. To Masonry: Approved toggle-type bolts on hollow masonry units and expansion anchor fasteners on solid masonry units.
- 4. To Existing Concrete: Expansion anchor fasteners.
- 5. Instead of expansion anchors, powder-actuated driven threaded studs provided with lock washers and nuts may be used in existing standard-weight concrete 4 inches thick or greater. Do not use for anchorage to lightweight-aggregate concrete or for slabs less than 4 inches thick.
- 6. To Steel: Beam clamps (MSS SP-58, Type 19, 21, 23, 25, or 27), complying with MSS SP-69 or Spring-tension clamps.
- 7. To Light Steel: Sheet metal screws.
- 8. Items Mounted on Hollow Walls and Nonstructural Building Surfaces: Mount cabinets, panelboards, disconnect switches, control enclosures, pull and junction boxes, transformers, and other devices on slotted-channel racks attached to substrate.
- D. Drill holes for expansion anchors in concrete at locations and to depths that avoid the need for reinforcing bars.

3.3 INSTALLATION OF FABRICATED METAL SUPPORTS

- A. Comply with installation requirements in Section 055000 "Metal Fabrications" for site-fabricated metal supports.
- B. Cut, fit, and place miscellaneous metal supports accurately in location, alignment, and elevation to support and anchor electrical materials and equipment.
- C. Field Welding: Comply with AWS D1.1/D1.1M.

3.4 CONCRETE BASES

- A. Construct concrete bases of dimensions indicated, but not less than 4 inches larger in both directions than supported unit, and so anchors will be a minimum of 10 bolt diameters from edge of the base.
- B. Use 3000-psi, 28-day compressive-strength concrete. Concrete materials, reinforcement, and placement requirements are specified in Section 033000 "Cast-in-Place Concrete."
- C. Anchor equipment to concrete base as follows:
 - 1. Place and secure anchorage devices. Use supported equipment manufacturer's setting drawings, templates, diagrams, instructions, and directions furnished with items to be embedded.
 - 2. Install anchor bolts to elevations required for proper attachment to supported equipment.
 - 3. Install anchor bolts according to anchor-bolt manufacturer's written instructions.

3.5 PAINTING

- A. Touchup: Comply with requirements in Section 099113 "Exterior Painting" and Section 099123 "Interior Painting" for cleaning and touchup painting of field welds, bolted connections, and abraded areas of shop paint on miscellaneous metal.
- B. Galvanized Surfaces: Clean welds, bolted connections, and abraded areas and apply galvanizing-repair paint to comply with ASTM A 780.

END OF SECTION 260529

SECTION 260533 - RACEWAYS AND BOXES FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Metal conduits and fittings.
- 2. Metal wireways and auxiliary gutters.
- 3. Surface raceways.
- 4. Boxes, enclosures, and cabinets.

B. Related Requirements:

- 1. Section 078413 "Penetration Firestopping" for firestopping at conduit and box entrances.
- 2. Section 260543 "Underground Ducts and Raceways for Electrical Systems" for exterior ductbanks, manholes, and underground utility construction.

1.3 DEFINITIONS

- A. ARC: Aluminum rigid conduit.
- B. GRC: Galvanized rigid steel conduit.
- C. IMC: Intermediate metal conduit.

1.4 ACTION SUBMITTALS

A. Product Data: For surface raceways, wireways and fittings, floor boxes, hinged-cover enclosures, and cabinets.

PART 2 - PRODUCTS

2.1 METAL CONDUITS AND FITTINGS

A. Metal Conduit:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Thomas & Betts Corporation; A Member of the ABB Group.
- 2. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 3. GRC: Comply with ANSI C80.1 and UL 6.
- 4. IMC: Comply with ANSI C80.6 and UL 1242.
- 5. EMT: Comply with ANSI C80.3 and UL 797.
- 6. FMC: Comply with UL 1; zinc-coated steel.
- 7. LFMC: Flexible steel conduit with PVC jacket and complying with UL 360.

B. Metal Fittings:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - a. AFC Cable Systems; a part of Atkore International.
 - b. Allied Tube & Conduit; a part of Atkore International.
 - c. Thomas & Betts Corporation; A Member of the ABB Group.
- 2. Comply with NEMA FB 1 and UL 514B.
- 3. Listing and Labeling: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- 4. Fittings, General: Listed and labeled for type of conduit, location, and use.
- 5. Fittings for EMT:
 - a. Material: Steel or die cast.
 - b. Type: Setscrew or compression.
- 6. Expansion Fittings: PVC or steel to match conduit type, complying with UL 651, rated for environmental conditions where installed, and including flexible external bonding jumper.
- 7. Coating for Fittings for PVC-Coated Conduit: Minimum thickness of 0.040 inch, with overlapping sleeves protecting threaded joints.

2.2 METAL WIREWAYS AND AUXILIARY GUTTERS

A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- 1. B-line, an Eaton business.
- 2. Hoffman; a brand of Pentair Equipment Protection.
- B. Description: Sheet metal, complying with UL 870 and NEMA 250, Type 1 unless otherwise indicated, and sized according to NFPA 70.
 - 1. Metal wireways installed outdoors shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Fittings and Accessories: Include covers, couplings, offsets, elbows, expansion joints, adapters, hold-down straps, end caps, and other fittings to match and mate with wireways as required for complete system.
- D. Wireway Covers: Screw-cover type unless otherwise indicated.
- E. Finish: Manufacturer's standard enamel finish.

2.3 SURFACE RACEWAYS

- A. Listing and Labeling: Surface raceways and tele-power poles shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Surface Metal Raceways: Galvanized steel with snap-on covers complying with UL 5. Manufacturer's standard enamel finish in color selected by Architect.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Hubbell Incorporated; Wiring Device-Kellems.
 - b. Panduit Corp.
 - c. Wiremold / Legrand.

2.4 BOXES, ENCLOSURES, AND CABINETS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following:
 - 1. Hoffman; a brand of Pentair Equipment Protection.
 - 2. Hubbell Incorporated.
 - 3. O-Z/Gedney; a brand of Emerson Industrial Automation.
- B. General Requirements for Boxes, Enclosures, and Cabinets: Boxes, enclosures, and cabinets installed in wet locations shall be listed for use in wet locations.

- C. Sheet Metal Outlet and Device Boxes: Comply with NEMA OS 1 and UL 514A.
- D. Cast-Metal Outlet and Device Boxes: Comply with NEMA FB 1, ferrous alloy, Type FD, with gasketed cover.
- E. Luminaire Outlet Boxes: Nonadjustable, designed for attachment of luminaire weighing 50 lb. Outlet boxes designed for attachment of luminaires weighing more than 50 lb shall be listed and marked for the maximum allowable weight.
- F. Paddle Fan Outlet Boxes: Nonadjustable, designed for attachment of paddle fan weighing 70 lb.
 - 1. Listing and Labeling: Paddle fan outlet boxes shall be listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- G. Small Sheet Metal Pull and Junction Boxes: NEMA OS 1.
- H. Cast-Metal Access, Pull, and Junction Boxes: Comply with NEMA FB 1 and UL 1773, cast aluminum with gasketed cover.
- I. Box extensions used to accommodate new building finishes shall be of same material as recessed box.
- J. Device Box Dimensions: 4 inches square by 2-1/8 inches deep.
- K. Gangable boxes are allowed.
- L. Cabinets:
 - 1. NEMA 250, Type 1 galvanized-steel box with removable interior panel and removable front, finished inside and out with manufacturer's standard enamel.
 - 2. Hinged door in front cover with flush latch and concealed hinge.
 - 3. Key latch to match panelboards.
 - 4. Metal barriers to separate wiring of different systems and voltage.
 - 5. Accessory feet where required for freestanding equipment.

PART 3 - EXECUTION

3.1 RACEWAY APPLICATION

- A. Outdoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed Conduit: GRC.
 - 2. Concealed Conduit, Aboveground: IMC.
 - 3. Underground Conduit: RNC, Type EPC-40-PVC,.
 - 4. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): LFMC.
 - 5. Boxes and Enclosures, Aboveground: NEMA 250, Type 3R.

- B. Indoors: Apply raceway products as specified below unless otherwise indicated:
 - 1. Exposed, Not Subject to Physical Damage: EMT.
 - 2. Exposed, Not Subject to Severe Physical Damage: EMT.
 - 3. Exposed and Subject to Severe Physical Damage: IMC. Raceway locations include the following:
 - a. Loading dock.
 - b. Corridors used for traffic of mechanized carts, forklifts, and pallet-handling units.
 - c. Mechanical rooms.
 - d. Gymnasiums.
 - 4. Concealed in Ceilings and Interior Walls and Partitions: EMT.
 - 5. Connection to Vibrating Equipment (Including Transformers and Hydraulic, Pneumatic, Electric Solenoid, or Motor-Driven Equipment): FMC, except use LFMC in damp or wet locations.
 - 6. Damp or Wet Locations: GRC.
 - 7. Boxes and Enclosures: NEMA 250, Type 1, except use NEMA 250, Type 4 stainless steel in institutional and commercial kitchens and damp or wet locations.
- C. Minimum Raceway Size: 1/2-inch trade size.
- D. Raceway Fittings: Compatible with raceways and suitable for use and location.
 - 1. Rigid and Intermediate Steel Conduit: Use threaded rigid steel conduit fittings unless otherwise indicated. Comply with NEMA FB 2.10.
 - 2. EMT: Use setscrew or compression, steel or cast-metal fittings. Comply with NEMA FB 2.10.
 - 3. Flexible Conduit: Use only fittings listed for use with flexible conduit. Comply with NEMA FB 2.20.
- E. Do not install aluminum conduits, boxes, or fittings in contact with concrete or earth.
- F. Install surface raceways only where indicated on Drawings.

3.2 INSTALLATION

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for hangers and supports.
- B. Comply with NECA 1 and NECA 101 for installation requirements except where requirements on Drawings or in this article are stricter. Comply with NECA 102 for aluminum conduits. Comply with NFPA 70 limitations for types of raceways allowed in specific occupancies and number of floors.
- C. Do not install raceways or electrical items on any "explosion-relief" walls or rotating equipment.
- D. Do not fasten conduits onto the bottom side of a metal deck roof.

- E. Keep raceways at least 6 inches away from parallel runs of flues and steam or hot-water pipes. Install horizontal raceway runs above water and steam piping.
- F. Complete raceway installation before starting conductor installation.
- G. Arrange stub-ups so curved portions of bends are not visible above finished slab.
- H. Make bends in raceway using large-radius preformed ells. Field bending shall be according to NFPA 70 minimum radii requirements. Use only equipment specifically designed for material and size involved.
- I. Conceal conduit within finished walls, ceilings, and floors unless otherwise indicated. Install conduits parallel or perpendicular to building lines.
- J. Support conduit within 12 inches of enclosures to which attached.
- K. Raceways Embedded in Slabs:
 - 1. Run conduit larger than 1-inch trade size, parallel or at right angles to main reinforcement. Where at right angles to reinforcement, place conduit close to slab support. Secure raceways to reinforcement at maximum 10-foot intervals.
 - 2. Arrange raceways to cross building expansion joints at right angles with expansion fittings.
 - 3. Arrange raceways to keep a minimum of 1 inch of concrete cover in all directions.
 - 4. Do not embed threadless fittings in concrete unless specifically approved by Architect for each specific location.
 - 5. Change from ENT to IMC before rising above floor.
- L. Stub-Ups to Above Recessed Ceilings:
 - 1. Use EMT, IMC, or RMC for raceways.
 - 2. Use a conduit bushing or insulated fitting to terminate stub-ups not terminated in hubs or in an enclosure.
- M. Raceway Terminations at Locations Subject to Moisture or Vibration: Use insulating bushings to protect conductors including conductors smaller than No. 4 AWG.
- N. Terminate threaded conduits into threaded hubs or with locknuts on inside and outside of boxes or cabinets. Install bushings on conduits up to 1-1/4-inch trade size and insulated throat metal bushings on 1-1/2-inch trade size and larger conduits terminated with locknuts. Install insulated throat metal grounding bushings on service conduits.
- O. Install raceways square to the enclosure and terminate at enclosures with locknuts. Install locknuts hand tight plus 1/4 turn more.
- P. Do not rely on locknuts to penetrate nonconductive coatings on enclosures. Remove coatings in the locknut area prior to assembling conduit to enclosure to assure a continuous ground path.
- Q. Cut conduit perpendicular to the length. For conduits 2-inch trade size and larger, use roll cutter or a guide to make cut straight and perpendicular to the length.

- R. Install pull wires in empty raceways. Use polypropylene or monofilament plastic line with not less than 200-lb tensile strength. Leave at least 12 inches of slack at each end of pull wire. Cap underground raceways designated as spare above grade alongside raceways in use.
- S. Surface Raceways:
 - 1. Install surface raceway with a minimum 2-inch radius control at bend points.
 - Secure surface raceway with screws or other anchor-type devices at intervals not exceeding 48 inches and with no less than two supports per straight raceway section. Support surface raceway according to manufacturer's written instructions. Tape and glue are not acceptable support methods.
- T. Install raceway sealing fittings at accessible locations according to NFPA 70 and fill them with listed sealing compound. For concealed raceways, install each fitting in a flush steel box with a blank cover plate having a finish similar to that of adjacent plates or surfaces. Install raceway sealing fittings according to NFPA 70.
- U. Comply with manufacturer's written instructions for solvent welding RNC and fittings.
- V. Expansion-Joint Fittings:
 - 1. Install in each run of aboveground RNC that is located where environmental temperature change may exceed 30 deg F and that has straight-run length that exceeds 25 feet. Install in each run of aboveground RMC and EMT conduit that is located where environmental temperature change may exceed 100 deg F and that has straight-run length that exceeds 100 feet.
 - 2. Install type and quantity of fittings that accommodate temperature change listed for each of the following locations:
 - a. Outdoor Locations Not Exposed to Direct Sunlight: 125 deg F temperature change.
 - b. Outdoor Locations Exposed to Direct Sunlight: 155 deg F temperature change.
 - c. Indoor Spaces Connected with Outdoors without Physical Separation: 125 deg F temperature change.
 - 3. Install fitting(s) that provide expansion and contraction for at least 0.00041 inch per foot of length of straight run per deg F of temperature change for PVC conduits. Install fitting(s) that provide expansion and contraction for at least 0.000078 inch per foot of length of straight run per deg F of temperature change for metal conduits.
 - 4. Install expansion fittings at all locations where conduits cross building or structure expansion joints.
 - 5. Install each expansion-joint fitting with position, mounting, and piston setting selected according to manufacturer's written instructions for conditions at specific location at time of installation. Install conduit supports to allow for expansion movement.
- W. Flexible Conduit Connections: Comply with NEMA RV 3. Use a maximum of 72 inches of flexible conduit forequipment subject to vibration, noise transmission, or movement; and for transformers and motors.
 - 1. Use LFMC in damp or wet locations subject to severe physical damage.
 - 2. Use LFMC in damp or wet locations not subject to severe physical damage.

- X. Mount boxes at heights indicated on Drawings. If mounting heights of boxes are not individually indicated, give priority to ADA requirements. Install boxes with height measured to center of box unless otherwise indicated.
- Y. Recessed Boxes in Masonry Walls: Saw-cut opening for box in center of cell of masonry block, and install box flush with surface of wall. Prepare block surfaces to provide a flat surface for a raintight connection between box and cover plate or supported equipment and box.
- Z. Horizontally separate boxes mounted on opposite sides of walls so they are not in the same vertical channel.
- AA. Locate boxes so that cover or plate will not span different building finishes.
- BB. Support boxes of three gangs or more from more than one side by spanning two framing members or mounting on brackets specifically designed for the purpose.
- CC. Fasten junction and pull boxes to or support from building structure. Do not support boxes by conduits.

3.3 SLEEVE AND SLEEVE-SEAL INSTALLATION FOR ELECTRICAL PENETRATIONS

A. Install sleeves and sleeve seals at penetrations of exterior floor and wall assemblies.

3.4 FIRESTOPPING

A. Install firestopping at penetrations of fire-rated floor and wall assemblies. Comply with requirements in Section 078413 "Penetration Firestopping."

3.5 PROTECTION

- A. Protect coatings, finishes, and cabinets from damage and deterioration.
 - 1. Repair damage to galvanized finishes with zinc-rich paint recommended by manufacturer.
 - 2. Repair damage to PVC coatings or paint finishes with matching touchup coating recommended by manufacturer.

END OF SECTION 260533

SECTION 260543 - UNDERGROUND DUCTS AND RACEWAYS FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Rigid nonmetallic duct.
 - 2. Duct accessories.
 - 3. Fiberglass handholes and boxes with polymer concrete cover.

1.3 DEFINITIONS

- A. Direct Buried: Duct or a duct bank that is buried in the ground, without any additional casing materials such as concrete.
- B. Duct: A single duct or multiple ducts. Duct may be either installed singly or as component of a duct bank.
- C. Duct Bank:
 - 1. Two or more ducts installed in parallel, with or without additional casing materials.
 - 2. Multiple duct banks.
- D. Trafficways: Locations where vehicular or pedestrian traffic is a normal course of events.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include duct-bank materials, including spacers and miscellaneous components.
 - 2. Include duct, conduits, and their accessories, including elbows, end bells, bends, fittings, and solvent cement.
 - 3. Include accessories for handholes and boxes.
 - 4. Include underground-line warning tape.

PART 2 - PRODUCTS

2.1 RIGID NONMETALLIC DUCT

- A. Underground Plastic Utilities Duct: Type EPC-40-PVC RNC, complying with NEMA TC 2 and UL 651, with matching fittings complying with NEMA TC 3 by same manufacturer as duct.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. ARNCO Corp.
 - 2. Crown Line Plastics.
 - 3. National Pipe & Plastics.
- C. Listed and labeled as defined in NFPA 70, by a nationally recognized testing laboratory, and marked for intended location and application.
- D. Solvents and Adhesives: As recommended by conduit manufacturer.

2.2 DUCT ACCESSORIES

- A. Duct Spacers: Factory-fabricated, rigid, PVC interlocking spacers; sized for type and size of duct with which used, and selected to provide minimum duct spacing indicated while supporting duct during concreting or backfilling.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Allied Tube & Conduit; a part of Atkore International.
 - b. CANTEX INC.
 - c. Carlon; a brand of Thomas & Betts Corporation.
- B. Underground-Line Warning Tape: Comply with requirements for underground-line warning tape specified in Section 260553 "Identification for Electrical Systems."

2.3 FIBERGLASS HANDHOLES AND BOXES WITH POLYMER CONCRETE FRAME AND COVER

- A. Description: Sheet-molded, fiberglass-reinforced, polyester resin enclosure joined to polymer concrete top ring or frame.
- B. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Quazite: Hubbell Power Systems, Inc.

- C. Standard: Comply with SCTE 77. Comply with tier requirements in "Underground Enclosure Application" Article.
- D. Color: Gray.
- E. Configuration: Units shall be designed for flush burial and have open bottom unless otherwise indicated.
- F. Cover: Weatherproof, secured by tamper-resistant locking devices and having structural load rating consistent with enclosure.
- G. Cover Finish: Nonskid finish shall have a minimum coefficient of friction of 0.50.
- H. Cover Legend: Molded lettering, "ELECTRIC."

PART 3 - EXECUTION

3.1 PREPARATION

- A. Coordinate layout and installation of duct and duct bank with final arrangement of other utilities, site grading, and surface features as determined in the field. Notify Architect if there is a conflict between areas of excavation and existing structures or archaeological sites to remain.
- B. Coordinate elevations of duct and duct-bank entrances into building and transformer with final locations and profiles of duct and duct banks, as determined by coordination with other utilities, underground obstructions, and surface features. Revise locations and elevations as required to suit field conditions, and as approved by Architect.

3.2 UNDERGROUND DUCT APPLICATION

- A. Duct for Electrical Feeders 600 V and Less: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- B. Duct for Electrical Branch Circuits: Type EPC-40-PVC RNC, direct-buried unless otherwise indicated.
- C. Underground Ducts Crossing Driveways: Type EPC-40 PVC RNC, encased in reinforced concrete.

3.3 EARTHWORK

- A. Excavation and Backfill: Comply with Section 312000 "Earth Moving," but do not use heavy-duty, hydraulic-operated, compaction equipment.
- B. Restoration: Replace area after construction vehicle traffic in immediate area is complete.

- C. Restore surface features at areas disturbed by excavation, and re-establish original grades unless otherwise indicated. Replace removed sod immediately after backfilling is completed.
- D. Restore areas disturbed by trenching, storing of dirt, cable laying, and other work. Restore vegetation and include necessary topsoiling, fertilizing, liming, seeding, sodding, sprigging, and mulching.

3.4 DUCT AND DUCT-BANK INSTALLATION

- A. Where indicated on Drawings, install duct, spacers, and accessories into the duct-bank configuration shown. Duct installation requirements in this Section also apply to duct bank.
- B. Install duct according to NEMA TCB 2.
- C. Slope: Pitch duct a minimum slope of 1:300 away from buildings and. Manufactured sweep bends in "Curves and Bends" Paragraph below are available in various radii up to 25 feet (7.5 m) for 4- and 5-inch (100- and 125-mm) duct, although a 48-inch (1200-mm) radius is the largest regularly stocked. To minimize pulling tensions, specify the largest radius possible, consistent with other Project requirements. See the Evaluations. Coordinate with Drawings.
- D. Curves and Bends: Use 5-degree angle couplings for small changes in direction. Use manufactured long sweep bends with a minimum radius of 48 inches, both horizontally and vertically, at other locations unless otherwise indicated.
- E. Joints: Use solvent-cemented joints in duct and fittings and make watertight according to manufacturer's written instructions. Stagger couplings so those of adjacent duct do not lie in same plane.
- F. Building Wall Penetrations: Make a transition from underground duct to GRC at least 10 feet outside the building wall, without reducing duct line slope away from the building and without forming a trap in the line. Use fittings manufactured for RNC-to-GRC transition.
- G. Sealing: Provide temporary closure at terminations of duct with pulled cables. Seal spare duct at terminations. Use sealing compound and plugs to withstand at least 15-psig hydrostatic pressure.
- H. Pulling Cord: Install 200-lbf- test nylon cord in empty ducts.
- I. Direct-Buried Duct and Duct Bank:
 - 1. Excavate trench bottom to provide firm and uniform support for duct. Comply with requirements in Section 312000 "Earth Moving" for preparation of trench bottoms for pipes less than 6 inches in nominal diameter.
 - 2. Width: Excavate trench 12 inches wider than duct on each side for service entrance ductbank.
 - 3. Width: Excavate trench 3 inches wider than duct on each side for branch circuit direct buried conduit.
 - 4. Set elevation of bottom of duct bank below frost line.

- 5. Support ducts on duct spacers coordinated with duct size, duct spacing, and outdoor temperature.
- 6. Spacer Installation: Place spacers close enough to prevent sagging and deforming of duct, with not less than four spacers per 20 feet of duct. Place spacers within 24 inches of duct ends. Stagger spacers approximately 6 inches between tiers. Secure spacers to earth and to ducts to prevent floating during concreting. Tie entire assembly together using fabric straps; do not use tie wires or reinforcing steel that may form conductive or magnetic loops around ducts or duct groups.
- 7. Install duct with a minimum of 3 inches between ducts for like services and 6 inches between power and communications duct.
- 8. Elbows: Install manufactured duct elbows for stub-ups, at building entrances, and at changes of direction in duct direction unless otherwise indicated. Encase elbows for stub-up ducts throughout length of elbow.
- 9. Install manufactured GRC elbows for stub-ups, at building entrances.
 - a. Couple RNC duct to GRC with adapters designed for this purpose, and encase coupling with 3 inches of concrete.
 - b. Stub-ups to Outdoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of base. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished floor and minimum 3 inches from conduit side to edge of slab.
 - c. Stub-ups to Indoor Equipment: Extend concrete-encased GRC horizontally a minimum of 60 inches from edge of wall. Install insulated grounding bushings on terminations at equipment.
 - 1) Stub-ups shall be minimum 4 inches above finished floor and no less than 3 inches from conduit side to edge of slab.
- 10. After installing first tier of duct, backfill and compact. Start at tie-in point and work toward end of duct run, leaving ducts at end of run free to move with expansion and contraction as temperature changes during this process. Repeat procedure after placing each tier. After placing last tier, hand place backfill to 4 inches over duct and hand tamp. Firmly tamp backfill around ducts to provide maximum supporting strength. Use hand tamper only. After placing controlled backfill over final tier, make final duct connections at end of run and complete backfilling with normal compaction. Comply with requirements in Section 312000 "Earth Moving" for installation of backfill materials.
 - a. Place minimum 3 inches of sand as a bed for duct. Place sand to a minimum of 6 inches above top level of duct.
 - b. Place minimum 6 inches of engineered fill above concrete encasement of duct.
- J. Underground-Line Warning Tape: Bury conducting underground line specified in Section 260553 "Identification for Electrical Systems" no less than 12 inches above all concrete-encased duct and duct banks. Align tape parallel to and within 3 inches of centerline of duct bank. Provide an additional warning tape for each 12-inch increment of duct-bank width over a nominal 18 inches. Space additional tapes 12 inches apart, horizontally.

3.5 INSTALLATION OF HANDHOLES AND BOXES OTHER THAN PRECAST CONCRETE

- A. Install handholes and boxes level and plumb and with orientation and depth coordinated with connecting duct, to minimize bends and deflections required for proper entrances. Use box extension if required to match depths of duct, and seal joint between box and extension as recommended by manufacturer.
- B. Unless otherwise indicated, support units on a level bed of crushed stone or gravel, graded from 1/2-inch sieve to No. 4 sieve and compacted to same density as adjacent undisturbed earth.
- C. Elevation: In paved areas and trafficways, set cover flush with finished grade. Set covers of other handholes 1 inch above finished grade.
- D. Install handholes and boxes with bottom below frost line, provide extension rings as necessary.

3.6 GROUNDING

A. Ground underground ducts and utility structures according to Section 260526 "Grounding and Bonding for Electrical Systems."

3.7 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Demonstrate capability and compliance with requirements on completion of installation of underground duct, duct bank, and utility structures.
 - 2. Pull solid aluminum or wood test mandrel through duct to prove joint integrity and adequate bend radii, and test for out-of-round duct. Provide a minimum 12-inch- long mandrel equal to duct size minus 1/4 inch. If obstructions are indicated, remove obstructions and retest.
- B. Correct deficiencies and retest as specified above to demonstrate compliance.
- C. Prepare test and inspection reports.

3.8 CLEANING

A. Pull leather-washer-type duct cleaner, with graduated washer sizes, through full length of duct until duct cleaner indicates that duct is clear of dirt and debris. Follow with rubber duct swab for final cleaning and to assist in spreading lubricant throughout ducts.

END OF SECTION 260543

SECTION 260553 - IDENTIFICATION FOR ELECTRICAL SYSTEMS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Color and legend requirements for raceways, conductors, and warning labels and signs.
- 2. Labels.
- 3. Bands and tubes.
- 4. Tapes and stencils.
- 5. Tags.
- 6. Signs.
- 7. Cable ties.
- 8. Paint for identification.
- 9. Fasteners for labels and signs.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for electrical identification products.

PART 2 - PRODUCTS

2.1 PERFORMANCE REQUIREMENTS

- A. Comply with NFPA 70.
- B. Comply with 29 CFR 1910.144 and 29 CFR 1910.145.
- C. Comply with ANSI Z535.4 for safety signs and labels.
- D. Comply with NFPA 70E requirements for arc-flash warning labels.
- E. Adhesive-attached labeling materials, including label stocks, laminating adhesives, and inks used by label printers, shall comply with UL 969.

- F. Thermal Movements: Allow for thermal movements from ambient and surface temperature changes.
 - 1. Temperature Change: 120 deg F, ambient; 180 deg F, material surfaces.

2.2 COLOR AND LEGEND REQUIREMENTS

- A. Raceways and Cables Carrying Circuits at 600 V or Less:
 - 1. Black letters on an orange field.
 - 2. Legend: Indicate voltage.
- B. Color-Coding for Phase- and Voltage-Level Identification, 600 V or Less: Use colors listed below for ungrounded service feeder and branch-circuit conductors.
 - 1. Color shall be factory applied or field applied for sizes larger than No. 8 AWG if authorities having jurisdiction permit.
 - 2. Colors for 208/120-V Circuits:
 - a. Phase A: Black.
 - b. Phase B: Red.
 - c. Phase C: Blue.
 - 3. Colors for 480/277-V Circuits:
 - a. Phase A: Brown.
 - b. Phase B: Orange.
 - c. Phase C: Yellow.
 - 4. Color for Neutral: White.
 - 5. Color for Equipment Grounds: Bare copper.
 - 6. Colors for Isolated Grounds: Green with white stripe.
- C. Warning Label Colors:
 - 1. Identify system voltage with black letters on an orange background.
- D. Equipment Identification Labels:
 - 1. Black letters on a white field.

2.3 LABELS

A. Vinyl Wraparound Labels: Preprinted, flexible labels laminated with a clear, weather- and chemical-resistant coating and matching wraparound clear adhesive tape for securing label ends.

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. emedco.
 - b. Panduit Corp.
- B. Snap-around Labels: Slit, pretensioned, flexible, preprinted, color-coded acrylic sleeves, with diameters sized to suit diameters and that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Panduit Corp.
- C. Self-Adhesive Wraparound Labels: Preprinted or Write-on, 3-mil- thick, polyester or vinyl flexible label with acrylic pressure-sensitive adhesive.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. emedco.
 - b. Panduit Corp.
 - 2. Self-Lamination: Clear; UV-, weather- and chemical-resistant; self-laminating, protective shield over the legend. Labels sized such that the clear shield overlaps the entire printed legend.
 - 3. Marker for Write-on Labels: Permanent, waterproof, black ink marker recommended by tag manufacturer.
 - 4. Marker for Pre-printed Labels: Machine-printed, permanent, waterproof, black ink recommended by printer manufacturer.
- D. Self-Adhesive Labels: Polyester or Vinyl, thermal, transfer-printed, 3-mil- thick, multicolor, weather- and UV-resistant, pressure-sensitive adhesive labels, configured for intended use and location.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. emedco.
 - c. Panduit Corp.
 - 2. Minimum Nominal Size:

- a. 1-1/2 by 6 inches for raceway and conductors.
- b. 3-1/2 by 5 inches for equipment.
- c. As required by authorities having jurisdiction.

2.4 BANDS AND TUBES

- A. Snap-around, Color-Coding Bands: Slit, pretensioned, flexible, solid-colored acrylic sleeves, 2 inches long, with diameters sized to suit diameters and that stay in place by gripping action.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. HellermannTyton.
 - c. Panduit Corp.
- B. Heat-Shrink Preprinted Tubes: Flame-retardant polyolefin tubes with machine-printed identification labels, sized to suit diameter and shrunk to fit firmly. Full shrink recovery occurs at a maximum of 200 deg F. Comply with UL 224.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Panduit Corp.

2.5 TAPES AND STENCILS

- A. Marker Tapes: Vinyl or vinyl-cloth, self-adhesive wraparound type, with circuit identification legend machine printed by thermal transfer or equivalent process.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. HellermannTyton.
 - c. Panduit Corp.
- B. Self-Adhesive Vinyl Tape: Colored, heavy duty, waterproof, fade resistant; not less than 3 mils thick by 1 to 2 inches wide; compounded for outdoor use.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Brady Corporation.
- b. Carlton Industries, LP.
- c. emedco.
- C. Tape and Stencil: 4-inch- wide black stripes on 10-inch centers placed diagonally over orange background and are 12 inches wide. Stop stripes at legends.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. HellermannTyton.
 - b. LEM Products Inc.
 - c. Marking Services, Inc.
- D. Floor Marking Tape: 2-inch- wide, 5-mil pressure-sensitive vinyl tape, with yellow and black stripes and clear vinyl overlay.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Seton Identification Products.
- E. Underground-Line Warning Tape:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Marking Services, Inc.
 - c. Seton Identification Products.
 - 2. Tape:
 - a. Recommended by manufacturer for the method of installation and suitable to identify and locate underground electrical and communications utility lines.
 - b. Printing on tape shall be permanent and shall not be damaged by burial operations.
 - c. Tape material and ink shall be chemically inert and not subject to degradation when exposed to acids, alkalis, and other destructive substances commonly found in soils.
 - 3. Color and Printing:
 - a. Comply with ANSI Z535.1, ANSI Z535.2, ANSI Z535.3, ANSI Z535.4, and ANSI Z535.5.
 - b. Inscriptions for Red-Colored Tapes: "ELECTRIC LINE, HIGH VOLTAGE".

c. Inscriptions for Orange-Colored Tapes: "TELEPHONE CABLE, CATV CABLE, COMMUNICATIONS CABLE, OPTICAL FIBER CABLE".

4. Detectable Tape: :

- a. Detectable three-layer laminate, consisting of a printed pigmented polyolefin film, a solid aluminum-foil core, and a clear protective film that allows inspection of the continuity of the conductive core; bright colored, continuous-printed on one side with the inscription of the utility, compounded for direct-burial service.
- b. Width: 3 inches.
- c. Overall Thickness: 5 mils.
- d. Foil Core Thickness: 0.35 mil.
- e. Weight: 28 lb/1000 sq. ft..
- f. Tensile according to ASTM D 882: 70 lbf and 4600 psi.
- F. Stenciled Legend: In nonfading, waterproof, black ink or paint. Minimum letter height shall be 1 inch.

2.6 TAGS

- A. Metal Tags: Brass or aluminum, 2 by 2 by 0.05 inch, with stamped legend, punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.
- B. Nonmetallic Preprinted Tags: Polyethylene tags, 0.015 inch thick, color-coded for phase and voltage level, with factory printed permanent designations; punched for use with self-locking cable tie fastener.
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Carlton Industries, LP.
 - c. emedco.

C. Write-on Tags:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Carlton Industries, LP.
- b. LEM Products Inc.
- c. Seton Identification Products.
- 2. Polyester Tags: 0.010 inch thick, with corrosion-resistant grommet and cable tie for attachment.
- 3. Marker for Write-on Tags: Permanent, waterproof, black ink marker recommended by tag manufacturer.
- 4. Marker for Pre-printed Tags: Machine-printed, permanent, waterproof, black ink marker recommended by printer manufacturer.

2.7 SIGNS

A. Baked-Enamel Signs:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Carlton Industries, LP.
 - b. Champion America.
 - c. emedco.
- 2. Preprinted aluminum signs, punched or drilled for fasteners, with colors, legend, and size required for application.
- 3. 1/4-inch grommets in corners for mounting.
- 4. Nominal Size: 7 by 10 inches.

B. Metal-Backed Butyrate Signs:

- 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Brady Corporation.
 - b. Champion America.
 - c. emedco.
- 2. Weather-resistant, nonfading, preprinted, cellulose-acetate butyrate signs, with 0.0396-inch galvanized-steel backing, punched and drilled for fasteners, and with colors, legend, and size required for application.
- 3. 1/4-inch grommets in corners for mounting.
- 4. Nominal Size: 10 by 14 inches.

C. Laminated Acrylic or Melamine Plastic Signs:

1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:

- a. Brady Corporation.
- b. Carlton Industries, LP.
- c. emedco.
- 2. Engraved legend.
- 3. Thickness:
 - a. For signs up to 20 sq. in., minimum 1/16 inch thick.
 - b. For signs larger than 20 sq. in., 1/8 inch thick.
 - c. Engraved legend with black letters on white face.
 - d. Self-adhesive.
 - e. Framed with mitered acrylic molding and arranged for attachment at applicable equipment.

2.8 CABLE TIES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. HellermannTyton.
 - 2. Panduit Corp.
- B. General-Purpose Cable Ties: Fungus inert, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black, except where used for color-coding.
- C. UV-Stabilized Cable Ties: Fungus inert, designed for continuous exposure to exterior sunlight, self-extinguishing, one piece, self-locking, and Type 6/6 nylon.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 12,000 psi.
 - 3. Temperature Range: Minus 40 to plus 185 deg F.
 - 4. Color: Black.
- D. Plenum-Rated Cable Ties: Self-extinguishing, UV stabilized, one piece, and self-locking.
 - 1. Minimum Width: 3/16 inch.
 - 2. Tensile Strength at 73 Deg F according to ASTM D 638: 7000 psi.
 - 3. UL 94 Flame Rating: 94V-0.
 - 4. Temperature Range: Minus 50 to plus 284 deg F.
 - 5. Color: Black.

2.9 MISCELLANEOUS IDENTIFICATION PRODUCTS

- A. Paint: Comply with requirements in painting Sections for paint materials and application requirements. Retain paint system applicable for surface material and location (exterior or interior).
- B. Fasteners for Labels and Signs: Self-tapping, stainless-steel screws or stainless-steel machine screws with nuts and flat and lock washers.

PART 3 - EXECUTION

3.1 PREPARATION

A. Self-Adhesive Identification Products: Before applying electrical identification products, clean substrates of substances that could impair bond, using materials and methods recommended by manufacturer of identification product.

3.2 INSTALLATION

- A. Verify and coordinate identification names, abbreviations, colors, and other features with requirements in other Sections requiring identification applications, Drawings, Shop Drawings, manufacturer's wiring diagrams, and operation and maintenance manual. Use consistent designations throughout Project.
- B. Install identifying devices before installing acoustical ceilings and similar concealment.
- C. Verify identity of each item before installing identification products.
- D. Coordinate identification with Project Drawings, manufacturer's wiring diagrams, and operation and maintenance manual.
- E. Apply identification devices to surfaces that require finish after completing finish work.
- F. Install signs with approved legend to facilitate proper identification, operation, and maintenance of electrical systems and connected items.
- G. Auxiliary Electrical Systems Conductor Identification: Identify field-installed alarm, control, and signal connections.

H. Vinyl Wraparound Labels:

- 1. Secure tight to surface of raceway or cable at a location with high visibility and accessibility.
- 2. Attach labels that are not self-adhesive type with clear vinyl tape, with adhesive appropriate to the location and substrate.
- I. Snap-around Labels: Secure tight to surface at a location with high visibility and accessibility.

J. Self-Adhesive Wraparound Labels: Secure tight to surface at a location with high visibility and accessibility.

K. Self-Adhesive Labels:

- 1. On each item, install unique designation label that is consistent with wiring diagrams, schedules, and operation and maintenance manual.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high label; where two lines of text are required, use labels 2 inches high.
- L. Snap-around Color-Coding Bands: Secure tight to surface at a location with high visibility and accessibility.
- M. Heat-Shrink, Preprinted Tubes: Secure tight to surface at a location with high visibility and accessibility.
- N. Marker Tapes: Secure tight to surface at a location with high visibility and accessibility.
- O. Self-Adhesive Vinyl Tape: Secure tight to surface at a location with high visibility and accessibility.
 - 1. Field-Applied, Color-Coding Conductor Tape: Apply in half-lapped turns for a minimum distance of 6 inches where splices or taps are made. Apply last two turns of tape with no tension to prevent possible unwinding.
- P. Tape and Stencil: Comply with requirements in painting Sections for surface preparation and paint application.
- Q. Floor Marking Tape: Apply stripes to finished surfaces following manufacturer's written instructions.
- R. Underground Line Warning Tape:
 - 1. During backfilling of trenches, install continuous underground-line warning tape directly above cable or raceway at 6 to 8 inches below finished grade. Use multiple tapes where width of multiple lines installed in a common trenchexceeds 16 inches overall.
 - 2. Install underground-line warning tape for direct-buried cables and cables in raceways.

S. Metal Tags:

- 1. Place in a location with high visibility and accessibility.
- 2. Secure using cable ties suitable for the space they are located.
- T. Nonmetallic Preprinted Tags:
 - 1. Place in a location with high visibility and accessibility.
 - 2. Secure using cable ties suitable for the space they are located.
- U. Write-on Tags:

- 1. Place in a location with high visibility and accessibility.
- 2. Secure using cable ties suitable for the space they are located.

V. Baked-Enamel Signs:

- 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on minimum 1-1/2-inch- high sign; where two lines of text are required, use signs minimum 2 inches high.

W. Metal-Backed Butyrate Signs:

- 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high sign; where two lines of text are required, use labels 2 inches high.

X. Laminated Acrylic or Melamine Plastic Signs:

- 1. Attach signs that are not self-adhesive type with mechanical fasteners appropriate to the location and substrate.
- 2. Unless otherwise indicated, provide a single line of text with 1/2-inch- high letters on 1-1/2-inch- high sign; where two lines of text are required, use labels 2 inches high.

Y. Cable Ties: General purpose, for attaching tags, except as listed below:

- 1. Outdoors: UV-stabilized nylon.
- 2. In Spaces Handling Environmental Air: Plenum rated.

3.3 IDENTIFICATION SCHEDULE

- A. Install identification materials and devices at locations for most convenient viewing without interference with operation and maintenance of equipment. Install access doors or panels to provide view of identifying devices.
- B. Identify conductors, cables, and terminals in enclosures and at junctions, terminals, pull points, and locations of high visibility. Identify by system and circuit designation.
- C. Accessible Raceways and Metal-Clad Cables, 600 V or Less, for Service, Feeder, and Branch Circuits, More Than 30 A and 120 V to Ground: Identify with self-adhesive raceway labels or vinyl tape applied in bands.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.

- D. Power-Circuit Conductor Identification, 600 V or Less: For conductors in pull and junction boxes, and handholes, use vinyl wraparound labels or self-adhesive wraparound labels to identify the phase.
 - 1. Locate identification at changes in direction, at penetrations of walls and floors, at 50-foot maximum intervals in straight runs, and at 25-foot maximum intervals in congested areas.
- E. Control-Circuit Conductor Identification: For conductors and cables in pull and junction boxes, and handholes, use write-on tags or self-adhesive labels with the conductor or cable designation, origin, and destination.
- F. Locations of Underground Lines: Underground-line warning tape for power, lighting, communication, and control wiring and optical-fiber cable.
- G. Workspace Indication: Apply floor marking tape to finished surfaces. Show working clearances in the direction of access to live parts. Workspace shall comply with NFPA 70 and 29 CFR 1926.403 unless otherwise indicated. Do not install at flush-mounted panelboards and similar equipment in finished spaces.
- H. Instructional Signs: Self-adhesive labels, including the color code for grounded and ungrounded conductors.
- I. Warning Labels for Indoor Cabinets, Boxes, and Enclosures for Power and Lighting: Self-adhesive labels.
 - 1. Apply to exterior of door, cover, or other access.
 - 2. For equipment with multiple power or control sources, apply to door or cover of equipment, including, but not limited to, the following:
 - a. Power-transfer switches.
 - b. Controls with external control power connections.
- J. Arc Flash Warning Labeling: Self-adhesive labels.
- K. Operating Instruction Signs: Self-adhesive labels.
- L. Equipment Identification Labels:
 - 1. Indoor Equipment: Self-adhesive label.
 - 2. Outdoor Equipment: Laminated acrylic or melamine sign.
 - 3. Equipment to Be Labeled:
 - a. Panelboards: Typewritten directory of circuits in the location provided by panelboard manufacturer. Panelboard identification shall be in the form of a self-adhesive, engraved, laminated acrylic or melamine label.
 - b. Enclosures and electrical cabinets.
 - c. Access doors and panels for concealed electrical items.
 - d. Transformers: Label that includes tag designation indicated on Drawings for the transformer, feeder, and panelboards or equipment supplied by the secondary.

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION 215021.00

- e. Enclosed switches.
- f. Enclosed controllers.
- g. Variable-speed controllers.
- h. Push-button stations.
- i. Contactors.
- j. Remote-controlled switches, dimmer modules, and control devices.

END OF SECTION 260553

SECTION 260923 - LIGHTING CONTROL DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Time switches.
- 2. Photoelectric switches.
- 3. Standalone daylight-harvesting switching and dimming controls.
- 4. Indoor occupancy and vacancy sensors.
- 5. Switchbox-mounted occupancy sensors.
- 6. Lighting contactors.

B. Related Requirements:

1. Section 262726 "Wiring Devices" for wall-box dimmers, non-networkable wall-switch occupancy sensors, and manual light switches.

1.3 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For each type of lighting control device to include in operation and maintenance manuals.

1.5 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace lighting control devices that fail(s) in materials or workmanship within specified warranty period.
 - 1. Failures include, but are not limited to, the following:
 - a. Faulty operation of lighting control software.
 - b. Faulty operation of lighting control devices.

2. Warranty Period: Two year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 TIME SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. Leviton Manufacturing Co., Inc.
- B. Electronic Time Switches: Solid state, programmable, with alphanumeric display; complying with UL 917.
 - 1. Listed and labeled as defined in NFPA 70 and marked for intended location and application.
 - 2. Contact Configuration: Refer to drawings.
 - 3. Contact Rating: Refer to drawings.
 - 4. Programs: Eight on-off set points on a 24-hour schedule and an annual holiday schedule that overrides the weekly operation on holidays.
 - 5. Circuitry: Allow connection of a photoelectric relay as substitute for on-off function of a program.
 - 6. Astronomic Time: All channels.
 - 7. Automatic daylight savings time changeover.
 - 8. Battery Backup: Not less than seven days reserve, to maintain schedules and time clock.

2.2 OUTDOOR PHOTOELECTRIC SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Intermatic, Inc.
 - 3. Leviton Manufacturing Co., Inc.
- B. Description: Solid state; one set of NO dry contacts rated for 24 V dc at 1 A, to operate connected load, complying with UL 773, and compatible with lighting control panel.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Light-Level Monitoring Range: 1.5 to 10 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 3. Time Delay: Thirty-second minimum, to prevent false operation.
 - 4. Mounting: 1/2-inch threaded male conduit.

5. Failure Mode: Luminaire stays ON.

2.3 DAYLIGHT-HARVESTING SWITCHING CONTROLS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Hubbell Building Automation, Inc.
 - 3. Lithonia Lighting; Acuity Brands Lighting, Inc.
- B. Description: System operates indoor lighting.
- C. Sequence of Operation: As daylight increases, the lights are turned off at a predetermined level. As daylight decreases, the lights are turned on at a predetermined level.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present.
 - b. When significant daylight is present (target level).
 - c. System programming is done with two hand-held, remote-control tools.
- D. Ceiling-Mounted Switching Controls: Solid-state, light-level sensor unit, with power pack, that detects changes in indoor lighting levels that are perceived by the eye.
- E. Electrical Components, Devices, and Accessories:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 3. Single- or multizone Sensor Output: Contacts rated to operate the associated power pack, complying with UL 773A. Sensor shall be powered by the power pack.
 - 4. Network-capable Sensor Output: Digital signal compatible with power pack.
 - 5. Power Pack: Capatable with device.
 - 6. General Space Sensors Light-Level Monitoring Range: 10 to 200 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 7. Skylight Sensors Light-Level Monitoring Range: 1000 to 10,000 fc, with an adjustment for turn-on and turn-off levels within that range.
 - 8. Time Delay: Adjustable from 5 to 300 seconds to prevent cycling.
 - 9. Set-Point Adjustment: Equip with deadband adjustment of 25, 50, and 75 percent above the "on" set point, or provide with separate adjustable "on" and "off" set points.
 - 10. Test Mode: User selectable, overriding programmed time delay to allow settings check.
 - 11. Control Load Status: User selectable to confirm that load wiring is correct.
 - 12. Indicator: Two digital displays to indicate the beginning of on-off cycles.

2.4 DAYLIGHT-HARVESTING DIMMING CONTROLS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 3. WattStopper; a Legrand® Group brand.
- B. Description: Sensing daylight and electrical lighting levels, the system adjusts the indoor electrical lighting levels. As daylight increases, the lights are dimmed.
 - 1. Lighting control set point is based on two lighting conditions:
 - a. When no daylight is present (target level).
 - b. When significant daylight is present.
 - 2. System programming is done with two hand-held, remote-control tools.
 - a. Initial setup tool.
 - b. Tool for occupants to adjust the target levels by increasing the set point up to 25 percent, or by minimizing the electric lighting level.
- C. Ceiling-Mounted Dimming Controls: Solid-state, light-level sensor unit, with power pack, to detect changes in indoor lighting levels that are perceived by the eye.
- D. Electrical Components, Devices, and Accessories:
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Sensor Output: 0- to 10-V dc to operate luminaires. Sensor is powered by controller unit.
 - 3. Light-Level Sensor Set-Point Adjustment Range: 20 to 60 fc.

2.5 INDOOR OCCUPANCYAND VACANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Lithonia Lighting; Acuity Brands Lighting, Inc.
 - 3. Lutron Electronics Co., Inc.
- B. General Requirements for Sensors:
 - 1. Wall or Ceiling-mounted, solid-state indoor occupancy and vacancy sensors.
 - 2. Dual technology.
 - 3. Power pack.
 - 4. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

5. Operation:

- a. Occupancy Sensor: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn them off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
- b. Vacancy Sensor: Unless otherwise indicated, lights are manually turned on and sensor turns lights off when the room is unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
- c. Combination Sensor: Unless otherwise indicated, sensor shall be programmed to turn lights on when coverage area is occupied and turn them off when unoccupied, or to turn off lights that have been manually turned on; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.

6. Mounting:

- a. Sensor: Suitable for mounting in any position on a standard outlet box.
- b. Relay: Externally mounted through a 1/2-inch knockout in a standard electrical enclosure.
- c. Time-Delay and Sensitivity Adjustments: Recessed and concealed behind hinged door.
- 7. Indicator: Digital display, to show when motion is detected during testing and normal operation of sensor.
- 8. Bypass Switch: Override the "on" function in case of sensor failure.
- 9. Automatic Light-Level Sensor: Adjustable from 2 to 200 fc; turn lights off when selected lighting level is present.
- C. Dual-Technology Type: Wall or Ceiling mounted as indicated on drawins; detect occupants in coverage area using PIR and ultrasonic detection methods. The particular technology or combination of technologies that control on-off functions is selectable in the field by operating controls on unit.
 - 1. Sensitivity Adjustment: Separate for each sensing technology.
 - 2. Detector Sensitivity: Detect occurrences of 6-inch- minimum movement of any portion of a human body that presents a target of not less than 36 sq. in., and detect a person of average size and weight moving not less than 12 inches in either a horizontal or a vertical manner at an approximate speed of 12 inches/s.
 - 3. Detection Coverage (Standard Room): Detect occupancy anywhere within a circular area of 1000 sq. ft. when mounted on a 96-inch- high ceiling.
 - 4. Detection Coverage (Room, Wall Mounted): Detect occupancy anywhere within a 180-degree pattern centered on the sensor over an area of 1000 square feet when mounted 48 inches above finished floor.

2.6 SWITCHBOX-MOUNTED OCCUPANCY SENSORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Cooper Industries, Inc.
 - 2. Lutron Electronics Co., Inc.

- 3. Sensor Switch, Inc.
- B. General Requirements for Sensors: Automatic-wall-switch occupancy sensor with manual onoff switch, suitable for mounting in a single gang switchbox.
 - 1. Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
 - 2. Occupancy Sensor Operation: Unless otherwise indicated, turn lights on when coverage area is occupied, and turn lights off when unoccupied; with a time delay for turning lights off, adjustable over a minimum range of 1 to 15 minutes.
 - 3. Operating Ambient Conditions: Dry interior conditions, 32 to 120 deg F.
 - 4. Switch Rating: Not less than 800-VA ballast or LED load at 120 V, 1200-VA ballast or LED load at 277 V, and 800-W incandescent.

2.7 LIGHTING CONTACTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Allen-Bradley/Rockwell Automation.
 - 2. Eaton.
 - 3. Square D.
- B. Description: Electrically operated and electrically held, combination-type lighting contactors with nonfused disconnect, complying with NEMA ICS 2 and UL 508.
 - 1. Current Rating for Switching: Listing or rating consistent with type of load served, including tungsten filament, inductive, and high-inrush ballast (ballast with 15 percent or less THD of normal load current).
 - 2. Fault Current Withstand Rating: Equal to or exceeding the available fault current at the point of installation.
 - 3. Enclosure: Comply with NEMA 250.
 - 4. Provide with control and pilot devices.

2.8 CONDUCTORS AND CABLES

- A. Power Wiring to Supply Side of Remote-Control Power Sources: Not smaller than No. 12 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- B. Classes 2 and 3 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 18 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Class 1 Control Cable: Multiconductor cable with stranded-copper conductors not smaller than No. 14 AWG. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine lighting control devices before installation. Reject lighting control devices that are wet, moisture damaged, or mold damaged.
- B. Examine walls and ceilings for suitable conditions where lighting control devices will be installed.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 SENSOR INSTALLATION

- A. Comply with NECA 1.
- B. Coordinate layout and installation of ceiling-mounted devices with other construction that penetrates ceilings or is supported by them, including light fixtures, HVAC equipment, smoke detectors, fire-suppression systems, and partition assemblies.
- C. Install and aim sensors in locations to achieve not less than 90-percent coverage of areas indicated. Do not exceed coverage limits specified in manufacturer's written instructions.

3.3 CONTACTOR INSTALLATION

- A. Comply with NECA 1.
- B. Mount electrically held lighting contactors with elastomeric isolator pads to eliminate structureborne vibration unless contactors are installed in an enclosure with factory-installed vibration isolators.

3.4 WIRING INSTALLATION

- A. Comply with NECA 1.
- B. Wiring Method: Comply with Section 260519 "Low-Voltage Electrical Power Conductors and Cables." Minimum conduit size is 1/2 inch.
- C. Wiring within Enclosures: Comply with NECA 1. Separate power-limited and nonpower-limited conductors according to conductor manufacturer's written instructions.
- D. Size conductors according to lighting control device manufacturer's written instructions unless otherwise indicated.
- E. Splices, Taps, and Terminations: Make connections only on numbered terminal strips in junction, pull, and outlet boxes; terminal cabinets; and equipment enclosures.

3.5 IDENTIFICATION

- A. Identify components and power and control wiring according to Section 260553 "Identification for Electrical Systems."
 - 1. Identify controlled circuits in lighting contactors.
 - 2. Identify circuits or luminaires controlled by photoelectric and occupancy sensors at each sensor.
- B. Label time switches and contactors with a unique designation.

3.6 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections with the assistance of a factory-authorized service representative:
 - 1. Operational Test: After installing time switches and sensors, and after electrical circuitry has been energized, start units to confirm proper unit operation.
 - 2. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment.
- B. Lighting control devices will be considered defective if they do not pass tests and inspections.
- C. Prepare test and inspection reports.

3.7 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months from date of Substantial Completion, provide on-site assistance in adjusting lighting control devices to suit actual occupied conditions. Provide up to two visits to Project during other-than-normal occupancy hours for this purpose.
 - 1. For occupancy and motion sensors, verify operation at outer limits of detector range. Set time delay to suit Owner's operations.
 - 2. For daylighting controls, adjust set points and deadband controls to suit Owner's operations.
 - 3. Align high-bay occupancy sensors using manufacturer's laser aiming tool.

3.8 SOFTWARE SERVICE AGREEMENT

- A. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- B. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule and access the system and to upgrade computer equipment if necessary.

3.9 DEMONSTRATION

A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain lighting control devices.

END OF SECTION 260923

SECTION 262213 - LOW-VOLTAGE DISTRIBUTION TRANSFORMERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section includes distribution, dry-type transformers with a nominal primary and secondary rating of 600 V and less, with capacities up to 1500 kVA.

1.3 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Include construction details, material descriptions, dimensions of individual components and profiles, and finishes for each type and size of transformer.
 - 2. Include rated nameplate data, capacities, weights, dimensions, minimum clearances, installed devices and features, and performance for each type and size of transformer.

B. Shop Drawings:

- 1. Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection.
- 2. Include diagrams for power, signal, and control wiring.

1.4 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For transformers to include in emergency, operation, and maintenance manuals.

1.5 DELIVERY, STORAGE, AND HANDLING

- A. Inspection: On receipt, inspect for and note any shipping damage to packaging and transformer.
 - 1. If manufacturer packaging is removed for inspection, and transformer will be stored after inspection, re-package transformer using original or new packaging materials that provide protection equivalent to manufacturer's packaging.
- B. Storage: Store in a warm, dry, and temperature-stable location in original shipping packaging.

- C. Temporary Heating: Apply temporary heat according to manufacturer's written instructions within the enclosure of each ventilated-type unit, throughout periods during which equipment is not energized and when transformer is not in a space that is continuously under normal control of temperature and humidity.
- D. Handling: Follow manufacturer's instructions for lifting and transporting transformers.

PART 2 - PRODUCTS

2.1 MANUFACTURERS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.
- B. Source Limitations: Obtain each transformer type from single source from single manufacturer.

2.2 GENERAL TRANSFORMER REQUIREMENTS

- A. Description: Factory-assembled and -tested, air-cooled units for 60-Hz service.
- B. Comply with NFPA 70.
 - 1. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- C. Transformers Rated 15 kVA and Larger:
 - 1. Comply with 10 CFR 431 (DOE 2016) efficiency levels.
 - 2. Marked as compliant with DOE 2016 efficiency levels by an NRTL.

2.3 DISTRIBUTION TRANSFORMERS

- A. Comply with NFPA 70.
- B. Cores: Electrical grade, non-aging silicon steel with high permeability and low hysteresis losses.
 - 1. One leg per phase.
 - 2. Grounded to enclosure.
- C. Coils: Continuous windings except for taps.
 - 1. Coil Material: Aluminum.
 - 2. Internal Coil Connections: Brazed or pressure type.

3. Terminal Connections: Welded.

D. Enclosure: Ventilated.

- 1. NEMA 250, Type 2: Core and coil shall be encapsulated within resin compound to seal out moisture and air.
- 2. KVA Ratings: Based on convection cooling only and not relying on auxiliary fans.
- 3. Wiring Compartment: Sized for conduit entry and wiring installation.
- 4. Finish: Comply with NEMA 250.
- E. Taps for Transformers 25 kVA and Larger: Two 2.5 percent taps above and two 2.5 percent taps below normal full capacity.
- F. Insulation Class, 30 kVA and Larger: 220 deg C, UL-component-recognized insulation system with a maximum of 150 deg C rise above 40 deg C ambient temperature.
- G. Grounding: Provide ground-bar kit or a ground bar installed on the inside of the transformer enclosure.
- H. Low-Sound-Level Requirements: Maximum sound levels when factory tested according to IEEE C57.12.91, as follows:
 - 1. 50.01 to 150.00 kVA: 50 dBA.
 - 2. 150.01 to 300.00 kVA: 55 dBA.

2.4 IDENTIFICATION

A. Nameplates: Self-adhesive label for each distribution transformer. Self-adhesive labels are specified in Section 260553 "Identification for Electrical Systems."

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine conditions for compliance with enclosure- and ambient-temperature requirements for each transformer.
- B. Verify that field measurements are as needed to maintain working clearances required by NFPA 70 and manufacturer's written instructions.
- C. Examine walls, floors, roofs, and concrete bases for suitable mounting conditions where transformers will be installed.
- D. Verify that ground connections are in place and requirements in Section 260526 "Grounding and Bonding for Electrical Systems" have been met. Maximum ground resistance shall be 5 ohms at location of transformer.

- E. Environment: Enclosures shall be rated for the environment in which they are located. Covers for NEMA 250, Type 4X enclosures shall not cause accessibility problems.
- F. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Construct concrete bases according to Section 033000 "Cast-in-Place Concrete" and anchor floor-mounted transformers according to manufacturer's written instructions and requirements in Section 260529 "Hangers and Supports for Electrical Systems."
 - 1. Coordinate size and location of concrete bases with actual transformer provided. Cast anchor-bolt inserts into bases. Concrete, reinforcement, and formwork requirements are specified with concrete.
- B. Secure transformer to concrete base according to manufacturer's written instructions.
- C. Secure covers to enclosure and tighten all bolts to manufacturer-recommended torques to reduce noise generation.
- D. Remove shipping bolts, blocking, and wedges.

3.3 CONNECTIONS

- A. Ground equipment according to Section 260526 "Grounding and Bonding for Electrical Systems."
- B. Connect wiring according to Section 260519 "Low-Voltage Electrical Power Conductors and Cables."
- C. Tighten electrical connectors and terminals according to manufacturer's published torquetightening values. If manufacturer's torque values are not indicated, use those specified in UL 486A-486B.
- D. Provide flexible connections at all conduit and conductor terminations and supports to eliminate sound and vibration transmission to the building structure.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Small (Up to 167-kVA Single-Phase or 500-kVA Three-Phase) Dry-Type Transformer Field Tests:
 - 1. Visual and Mechanical Inspection.
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, and grounding.

- c. Verify that resilient mounts are free and that any shipping brackets have been removed.
- d. Verify the unit is clean.
- e. Perform specific inspections and mechanical tests recommended by manufacturer.
- f. Verify that as-left tap connections are as specified.
- g. Verify the presence of surge arresters and that their ratings are as specified.

2. Electrical Tests:

- a. Verify correct secondary voltage, phase-to-phase and phase-to-neutral, after energization and prior to loading.
- C. Remove and replace units that do not pass tests or inspections and retest as specified above.
- D. Test Labeling: On completion of satisfactory testing of each unit, attach a dated and signed "Satisfactory Test" label to tested component.

3.5 ADJUSTING

- A. Record transformer secondary voltage at each unit for at least 48 hours of typical occupancy period. Adjust transformer taps to provide optimum voltage conditions at secondary terminals. Optimum is defined as not exceeding nameplate voltage plus 5 percent and not being lower than nameplate voltage minus 3 percent at maximum load conditions. Submit recording and tap settings as test results.
- B. Output Settings Report: Prepare a written report recording output voltages and tap settings.

3.6 CLEANING

A. Vacuum dirt and debris; do not use compressed air to assist in cleaning.

END OF SECTION 262213

SECTION 262416 - PANELBOARDS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Distribution panelboards.
 - 2. Lighting and appliance branch-circuit panelboards.

1.3 DEFINITIONS

- A. ATS: Acceptance testing specification.
- B. GFCI: Ground-fault circuit interrupter.
- C. GFEP: Ground-fault equipment protection.
- D. MCCB: Molded-case circuit breaker.
- E. SPD: Surge protective device.
- F. VPR: Voltage protection rating.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of panelboard.
 - 1. Include materials, switching and overcurrent protective devices, SPDs, accessories, and components indicated.
 - 2. Include dimensions and manufacturers' technical data on features, performance, electrical characteristics, ratings, and finishes.
- B. Shop Drawings: For each panelboard and related equipment.
 - 1. Include dimensioned plans, elevations, sections, and details.
 - 2. Show tabulations of installed devices with nameplates, conductor termination sizes, equipment features, and ratings.

- 3. Detail enclosure types including mounting and anchorage, environmental protection, knockouts, corner treatments, covers and doors, gaskets, hinges, and locks.
- 4. Detail bus configuration, current, and voltage ratings.
- 5. Short-circuit current rating of panelboards and overcurrent protective devices.
- 6. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices and auxiliary components.
- 7. Include wiring diagrams for power, signal, and control wiring.

1.5 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For panelboards and components.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Keys: Two spares for each type of panelboard cabinet lock.
 - 2. Fuses for Fused Switches: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.

1.7 QUALITY ASSURANCE

A. Manufacturer Qualifications: ISO 9001 or 9002 certified.

1.8 WARRANTY

- A. Manufacturer's Warranty: Manufacturer agrees to repair or replace panelboards that fail in materials or workmanship within specified warranty period.
 - 1. Panelboard Warranty Period: 18 months from date of Substantial Completion.
- B. Special Warranty: Manufacturer's standard form in which manufacturer agrees to repair or replace SPD that fails in materials or workmanship within specified warranty period.
 - 1. SPD Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 PANELBOARDS COMMON REQUIREMENTS

- A. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- B. Comply with NEMA PB 1.

- C. Comply with NFPA 70.
- D. Enclosures: Flush and Surface-mounted, dead-front cabinets.
 - 1. Rated for environmental conditions at installed location.
 - a. Indoor Dry and Clean Locations: NEMA 250, Type 1.
 - b. Outdoor Locations: NEMA 250, Type 3R.
 - c. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 2. Height: 84 inches maximum.
 - 3. Hinged Front Cover: Entire front trim hinged to box and with standard door within hinged trim cover. Trims shall cover all live parts and shall have no exposed hardware.
 - 4. Finishes:
 - a. Panels and Trim: Steel and galvanized steel, factory finished immediately after cleaning and pretreating with manufacturer's standard two-coat, baked-on finish consisting of prime coat and thermosetting topcoat.
 - b. Back Boxes: Galvanized steel.

E. Incoming Mains:

- 1. Location: Field coordinate.
- 2. Main Breaker: Refer to drawings.
- F. Phase, Neutral, and Ground Buses:
 - 1. Material: Tin-plated aluminum.
 - a. Plating shall run entire length of bus.
 - b. Bus shall be fully rated the entire length.
 - 2. Interiors shall be factory assembled into a unit. Replacing switching and protective devices shall not disturb adjacent units or require removing the main bus connectors.
 - 3. Equipment Ground Bus: Adequate for feeder and branch-circuit equipment grounding conductors; bonded to box.
 - 4. Full-Sized Neutral: Equipped with full-capacity bonding strap for service entrance applications. Mount electrically isolated from enclosure. Do not mount neutral bus in gutter.
- G. Conductor Connectors: Suitable for use with conductor material and sizes.
 - 1. Material: Tin-plated aluminum.
 - 2. Terminations shall allow use of 75 deg C rated conductors without derating.
 - 3. Size: Lugs suitable for indicated conductor sizes, with additional gutter space, if required, for larger conductors.
 - 4. Main and Neutral Lugs: Mechanical type, with a lug on the neutral bar for each pole in the panelboard.
 - 5. Ground Lugs and Bus-Configured Terminators: Mechanical type, with a lug on the bar for each pole in the panelboard.

- H. NRTL Label: Panelboards or load centers shall be labeled by an NRTL acceptable to authority having jurisdiction for use as service equipment with one or more main service disconnecting and overcurrent protective devices. Panelboards or load centers shall have meter enclosures, wiring, connections, and other provisions for utility metering. Coordinate with utility company for exact requirements.
- I. Panelboard Short-Circuit Current Rating: Fully rated to interrupt symmetrical short-circuit current available at terminals. Assembly listed by an NRTL for 100 percent interrupting capacity.
 - 1. Panelboards and overcurrent protective devices rated 240 V or less shall have short-circuit ratings as shown on Drawings, but not less than 10,000 A rms symmetrical.
 - 2. Panelboards and overcurrent protective devices rated above 240 V and less than 600 V shall have short-circuit ratings as shown on Drawings, but not less than 14,000 A rms symmetrical.

2.2 PERFORMANCE REQUIREMENTS

A. Surge Suppression: Factory installed as an integral part of indicated panelboards, complying with UL 1449 SPD Type 2.

2.3 POWER PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, distribution type.
- C. Doors: Secured with vault-type latch with tumbler lock; keyed alike.
 - 1. For doors more than 36 inches high, provide two latches, keyed alike.
- D. Mains: Circuit breaker.
- E. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes 125 A and Smaller: Bolt-on circuit breakers.
- F. Branch Overcurrent Protective Devices for Circuit-Breaker Frame Sizes Larger Than 125 A: Bolt-on circuit breakers.

2.4 LIGHTING AND APPLIANCE BRANCH-CIRCUIT PANELBOARDS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.
- B. Panelboards: NEMA PB 1, lighting and appliance branch-circuit type.
- C. Mains: Refer to drawings.
- D. Branch Overcurrent Protective Devices: Bolt-on circuit breakers, replaceable without disturbing adjacent units.
- E. Doors: Door-in-door construction with concealed hinges; secured with multipoint latch with tumbler lock; keyed alike. Outer door shall permit full access to the panel interior. Inner door shall permit access to breaker operating handles and labeling, but current carrying terminals and bus shall remain concealed.

2.5 DISCONNECTING AND OVERCURRENT PROTECTIVE DEVICES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.
- B. Fused Switch: NEMA KS 1, Type HD; clips to accommodate specified fuses; lockable handle.
 - 1. Fuses: Per equipment requirements.
 - 2. Fused Switch Features and Accessories:
 - a. Standard ampere ratings and number of poles.
 - b. Mechanical cover interlock with a manual interlock override, to prevent the opening of the cover when the switch is in the on position. The interlock shall prevent the switch from being turned on with the cover open. The operating handle shall have lock-off means with provisions for three padlocks.
 - c. Auxiliary Contacts: Two normally open and normally closed contact(s) that operate with switch handle operation.

2.6 IDENTIFICATION

A. Panelboard Label: Manufacturer's name and trademark, voltage, amperage, number of phases, and number of poles shall be located on the interior of the panelboard door.

- B. Breaker Labels: Faceplate shall list current rating, UL and IEC certification standards, and AIC rating.
- C. Circuit Directory: Computer-generated circuit directory mounted inside panelboard door with transparent plastic protective cover.
 - 1. Circuit directory shall identify specific purpose with detail sufficient to distinguish it from all other circuits.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Verify actual conditions with field measurements prior to ordering panelboards to verify that equipment fits in allocated space in, and comply with, minimum required clearances specified in NFPA 70.
- B. Receive, inspect, handle, and store panelboards according to NECA 407.
- C. Examine panelboards before installation. Reject panelboards that are damaged, rusted, or have been subjected to water saturation.
- D. Examine elements and surfaces to receive panelboards for compliance with installation tolerances and other conditions affecting performance of the Work.
- E. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 INSTALLATION

- A. Coordinate layout and installation of panelboards and components with other construction that penetrates walls or is supported by them, including electrical and other types of equipment, raceways, piping, encumbrances to workspace clearance requirements, and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.
- B. Comply with NECA 1.
- C. Install panelboards and accessories according to NECA 407.
- D. Equipment Mounting:
 - 1. Attach panelboard to the vertical finished or structural surface behind the panelboard.
- E. Temporary Lifting Provisions: Remove temporary lifting eyes, channels, and brackets and temporary blocking of moving parts from panelboards.
- F. Mount top of trim 90 inches above finished floor unless otherwise indicated.
- G. Mount panelboard cabinet plumb and rigid without distortion of box.

- H. Mount recessed panelboards with fronts uniformly flush with wall finish and mating with back box.
- I. Mount surface-mounted panelboards to steel slotted supports 5/8 inch in depth. Orient steel slotted supports vertically.
- J. Install overcurrent protective devices and controllers not already factory installed.
 - 1. Tighten bolted connections and circuit breaker connections using calibrated torque wrench or torque screwdriver per manufacturer's written instructions.
- K. Make grounding connections and bond neutral for services and separately derived systems to ground. Make connections to grounding electrodes, separate grounds for isolated ground bars, and connections to separate ground bars.
- L. Install filler plates in unused spaces.
- M. Stub four 1-inch empty conduits from panelboard into accessible ceiling space or space designated to be ceiling space in the future.
- N. Mount spare fuse cabinet in accessible location.

3.3 IDENTIFICATION

- A. Identify field-installed conductors, interconnecting wiring, and components; install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems."
- B. Panelboard Nameplates: Label each panelboard with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- C. Device Nameplates: Label each branch circuit device in power panelboards with a nameplate complying with requirements for identification specified in Section 260553 "Identification for Electrical Systems."
- D. Install warning signs complying with requirements in Section 260553 "Identification for Electrical Systems" identifying source of remote circuit.

3.4 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Acceptance Testing Preparation:
 - 1. Test continuity of each circuit.
- C. Tests and Inspections:
 - 1. Perform each visual and mechanical inspection and electrical test for low-voltage air circuit breakers and low-voltage surge arrestors stated in NETA ATS, Paragraph 7.6

- Circuit Breakers and Paragraph 7.19.1 Surge Arrestors, Low-Voltage. Do not perform optional tests. Certify compliance with test parameters.
- 2. Correct malfunctioning units on-site, where possible, and retest to demonstrate compliance; otherwise, replace with new units and retest.
- D. Panelboards will be considered defective if they do not pass tests and inspections.
- E. Prepare test and inspection reports, including a certified report that identifies panelboards included and that describes scanning results, with comparisons of the two scans. Include notation of deficiencies detected, remedial action taken, and observations after remedial action.

3.5 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

3.6 PROTECTION

A. Temporary Heating: Prior to energizing panelboards, apply temporary heat to maintain temperature according to manufacturer's written instructions.

END OF SECTION 262416

SECTION 262726 - WIRING DEVICES

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Standard-grade receptacles, 125 V, 20 A.
 - 2. GFCI receptacles, 125 V, 20 A.
 - 3. Toggle switches, 120/277 V, 20 A.

1.3 DEFINITIONS

- A. AFCI: Arc-fault circuit interrupter.
- B. BAS: Building automation system.
- C. EMI: Electromagnetic interference.
- D. GFCI: Ground-fault circuit interrupter.
- E. Pigtail: Short lead used to connect a device to a branch-circuit conductor.
- F. RFI: Radio-frequency interference.
- G. SPD: Surge protective device.

1.4 ACTION SUBMITTALS

A. Product Data: For each type of product.

1.5 INFORMATIONAL SUBMITTALS

A. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Operation and Maintenance Data: For wiring devices to include in all manufacturers' packing-label warnings and instruction manuals that include labeling conditions.

PART 2 - PRODUCTS

2.1 GENERAL WIRING-DEVICE REQUIREMENTS

- A. Wiring Devices, Components, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and use.
- B. Comply with NFPA 70.
- C. RoHS compliant.
- D. Comply with NEMA WD 1.
- E. Devices for Owner-Furnished Equipment:
 - 1. Receptacles: Match plug configurations.
- F. Device Color:
 - 1. Wiring Devices Connected to Normal Power System: Black unless otherwise indicated or required by NFPA 70 or device listing.
- G. Source Limitations: Obtain each type of wiring device and associated wall plate from single source from single manufacturer.

2.2 STANDARD-GRADE RECEPTACLES, 125 V, 20 A

- A. Duplex Receptacles, 125 V, 20 A:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Leviton Manufacturing Co., Inc.
 - 2. Description: Two pole, three wire, and self-grounding.
 - 3. Configuration: NEMA WD 6, Configuration 5-20R.
 - 4. Standards: Comply with UL 498 and FS W-C-596.

2.3 GFCI RECEPTACLES, 125 V, 20 A

A. Duplex GFCI Receptacles, 125 V, 20 A:

- 1. Description: Integral GFCI with "Test" and "Reset" buttons and LED indicator light. Two pole, three wire, and self-grounding.
- 2. Configuration: NEMA WD 6, Configuration 5-20R.
- 3. Type: Feed through.
- 4. Standards: Comply with UL 498, UL 943 Class A, and FS W-C-596.

2.4 TOGGLE SWITCHES, 120/277 V, 20 A

A. Single-Pole Switches, 120/277 V, 20 A:

- 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following:
 - a. Eaton (Arrow Hart).
 - b. Hubbell Incorporated; Wiring Device-Kellems.
 - c. Pass & Seymour/Legrand (Pass & Seymour).
- 2. Standards: Comply with UL 20 and FS W-S-896.
- B. Three-Way Switches, 120/277 V, 20 A:
 - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - a. Eaton (Arrow Hart).
 - b. Leviton Manufacturing Co., Inc.
 - c. Pass & Seymour/Legrand (Pass & Seymour).
 - 2. Comply with UL 20 and FS W-S-896.

2.5 WALL PLATES

- A. Single Source: Obtain wall plates from same manufacturer of wiring devices.
- B. Single and combination types shall match corresponding wiring devices.
 - 1. Plate-Securing Screws: Metal with head color to match plate finish.
 - 2. Material for Finished Spaces: 0.035-inch- thick, satin-finished, Type 302 stainless steel.
 - 3. Material for Unfinished Spaces: Galvanized steel.
 - 4. Material for Damp Locations: Cast aluminum with spring-loaded lift cover, and listed and labeled for use in wet and damp locations.

C. Wet-Location, Weatherproof Cover Plates: NEMA 250, complying with Type 3R, weather-resistant, die-cast aluminum with lockable cover.

PART 3 - EXECUTION

3.1 INSTALLATION

A. Comply with NECA 1, including mounting heights listed in that standard, unless otherwise indicated.

B. Coordination with Other Trades:

- 1. Protect installed devices and their boxes. Do not place wall finish materials over device boxes, and do not cut holes for boxes with routers that are guided by riding against outside of boxes.
- 2. Keep outlet boxes free of plaster, drywall joint compound, mortar, cement, concrete, dust, paint, and other material that may contaminate the raceway system, conductors, and cables.
- 3. Install device boxes in brick or block walls so that the cover plate does not cross a joint unless the joint is troweled flush with the face of the wall.
- 4. Install wiring devices after all wall preparation, including painting, is complete.

C. Conductors:

- 1. Do not strip insulation from conductors until right before they are spliced or terminated on devices.
- 2. Strip insulation evenly around the conductor using tools designed for the purpose. Avoid scoring or nicking of solid wire or cutting strands from stranded wire.
- 3. The length of free conductors at outlets for devices shall comply with NFPA 70, Article 300, without pigtails.
- 4. Existing Conductors:
 - a. Cut back and pigtail, or replace all damaged conductors.
 - b. Straighten conductors that remain and remove corrosion and foreign matter.
 - c. Pigtailing existing conductors is permitted, provided the outlet box is large enough.

D. Device Installation:

- 1. Replace devices that have been in temporary use during construction and that were installed before building finishing operations were complete.
- 2. Keep each wiring device in its package or otherwise protected until it is time to connect conductors.
- 3. Do not remove surface protection, such as plastic film and smudge covers, until the last possible moment.
- 4. Connect devices to branch circuits using pigtails that are not less than 6 inches in length.
- 5. When there is a choice, use side wiring with binding-head screw terminals. Wrap solid conductor tightly clockwise, two-thirds to three-fourths of the way around terminal screw.

- 6. Use a torque screwdriver when a torque is recommended or required by manufacturer.
- 7. When conductors larger than No. 12 AWG are installed on 15- or 20-A circuits, splice No. 12 AWG pigtails for device connections.
- 8. Tighten unused terminal screws on the device.
- 9. When mounting into metal boxes, remove the fiber or plastic washers used to hold device-mounting screws in yokes, allowing metal-to-metal contact.

E. Receptacle Orientation:

- 1. Install ground pin of vertically mounted receptacles down, and on horizontally mounted receptacles to the right.
- F. Device Plates: Do not use oversized or extra-deep plates. Repair wall finishes and remount outlet boxes when standard device plates do not fit flush or do not cover rough wall opening.
- G. Arrangement of Devices: Unless otherwise indicated, mount flush, with long dimension vertical and with grounding terminal of receptacles on top. Group adjacent switches under single, multigang wall plates.
- H. Adjust locations of floor service outlets and service poles to suit arrangement of partitions and furnishings.

3.2 GFCI RECEPTACLES

A. Install non-feed-through GFCI receptacles where protection of downstream receptacles is not required.

3.3 IDENTIFICATION

- A. Comply with Section 260553 "Identification for Electrical Systems."
- B. Identify each receptacle with panelboard identification and circuit number. Use hot, stamped, or engraved machine printing with black-filled lettering on face of plate, and durable wire markers or tags inside outlet boxes.

3.4 FIELD QUALITY CONTROL

A. Tests for Receptacles:

- 1. GFCI Trip: Test for for proper operation.
- 2. Verify that the device and its outlet box are securely mounted.
- 3. Tests shall be diagnostic, indicating damaged conductors, poor connections, defective devices, or similar problems. Correct circuit conditions, remove malfunctioning units and replace with new ones, and retest as specified above.
- B. Wiring device will be considered defective if it does not pass tests and inspections.
- C. Prepare test and inspection reports.

END OF SECTION 262726

SECTION 262816 - ENCLOSED SWITCHES AND CIRCUIT BREAKERS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Section Includes:
 - 1. Fusible switches.
 - 2. Nonfusible switches.

1.3 DEFINITIONS

- A. NC: Normally closed.
- B. NO: Normally open.
- C. SPDT: Single pole, double throw.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of enclosed switch, circuit breaker, accessory, and component indicated. Include nameplate ratings, dimensioned elevations, sections, weights, and manufacturers' technical data on features, performance, electrical characteristics, ratings, accessories, and finishes.
 - 1. Enclosure types and details for types other than NEMA 250, Type 1.
 - 2. Current and voltage ratings.
 - 3. Short-circuit current ratings (interrupting and withstand, as appropriate).
 - 4. Detail features, characteristics, ratings, and factory settings of individual overcurrent protective devices, accessories, and auxiliary components.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For enclosed switches and circuit breakers to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:

a. Manufacturer's written instructions for testing and adjusting enclosed switches and circuit breakers.

1.6 MAINTENANCE MATERIAL SUBMITTALS

- A. Furnish extra materials that match products installed and that are packaged with protective covering for storage and identified with labels describing contents.
 - 1. Fuses: Equal to 10 percent of quantity installed for each size and type, but no fewer than three of each size and type.
 - 2. Fuse Pullers: Two for each size and type.

1.7 WARRANTY

- A. Manufacturer's Warranty: Manufacturer and Installer agree to repair or replace components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Period: One year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 GENERAL REQUIREMENTS

- A. Source Limitations: Obtain enclosed switches and circuit breakers, overcurrent protective devices, components, and accessories, within same product category, from single manufacturer.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by an NRTL, and marked for intended location and application.
- C. Comply with NFPA 70.

2.2 FUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.

B. Type HD, Heavy Duty:

- 1. Single throw.
- 2. Three pole.
- 3. 600-V ac.
- 4. 200 A and smaller.

- 5. UL 98 and NEMA KS 1, horsepower rated, with clips or bolt pads to accommodate required fuses.
- 6. Lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating field coordinate.
- 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.3 NONFUSIBLE SWITCHES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Eaton.
 - 2. SIEMENS Industry, Inc.; Energy Management Division.
 - 3. Square D; by Schneider Electric.
- B. Type HD, Heavy Duty, Three Pole, Single Throw, 600-V ac, 1200 A and Smaller: UL 98 and NEMA KS 1, horsepower rated, lockable handle with capability to accept three padlocks, and interlocked with cover in closed position.

C. Accessories:

- 1. Equipment Ground Kit: Internally mounted and labeled for copper and aluminum ground conductors.
- 2. Neutral Kit: Internally mounted; insulated, capable of being grounded and bonded; labeled for copper and aluminum neutral conductors.
- 3. Class R Fuse Kit: Provides rejection of other fuse types when Class R fuses are specified.
- 4. Auxiliary Contact Kit: Two NO/NC (Form "C") auxiliary contact(s), arranged to activate before switch blades open. Contact rating field coordinate.
- 5. Lugs: Mechanical type, suitable for number, size, and conductor material.

2.4 ENCLOSURES

- A. Enclosed Switches and Circuit Breakers: UL 489, NEMA KS 1, NEMA 250, and UL 50, to comply with environmental conditions at installed location.
- B. Enclosure Finish: The enclosure shall be finished with gray baked enamel paint, electrodeposited on cleaned, phosphatized steel (NEMA 250 Type 1); gray baked enamel paint, electrodeposited on cleaned, phosphatized galvannealed steel (NEMA 250 Types 3R, 12); a

brush finish on Type 304 stainless steel (NEMA 250 Type 4-4X stainless steel); copper-free cast aluminum alloy (NEMA 250 Types 7, 9). Provide the required finish for the appropriate environment.

- C. Conduit Entry: NEMA 250 Types 4, 4X, and 12 enclosures shall contain no knockouts. NEMA 250 Types 7 and 9 enclosures shall be provided with threaded conduit openings in both endwalls.
- D. Enclosures designated as NEMA 250 Type 4, 4X stainless steel, 12, or 12K shall have a dual cover interlock mechanism to prevent unintentional opening of the enclosure cover when the circuit breaker is ON and to prevent turning the circuit breaker ON when the enclosure cover is open.
- E. NEMA 250 Type 7/9 enclosures shall be furnished with a breather and drain kit to allow their use in outdoor and wet location applications.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine elements and surfaces to receive enclosed switches and circuit breakers for compliance with installation tolerances and other conditions affecting performance of the Work.
- B. Proceed with installation only after unsatisfactory conditions have been corrected.
 - 1. Commencement of work shall indicate Installer's acceptance of the areas and conditions as satisfactory.

3.2 ENCLOSURE ENVIRONMENTAL RATING APPLICATIONS

- A. Enclosed Switches and Circuit Breakers: Provide enclosures at installed locations with the following environmental ratings.
 - 1. Indoor, Dry and Clean Locations: NEMA 250, Type 1.
 - 2. Outdoor Locations: NEMA 250, Type 3R.
 - 3. Kitchen Areas: NEMA 250, Type 4X, stainless steel.
 - 4. Other Wet or Damp, Indoor Locations: NEMA 250, Type 4.
 - 5. Indoor Locations Subject to Dust, Falling Dirt, and Dripping Noncorrosive Liquids: NEMA 250, Type 12.

3.3 INSTALLATION

A. Coordinate layout and installation of switches, circuit breakers, and components with equipment served and adjacent surfaces. Maintain required workspace clearances and required clearances for equipment access doors and panels.

- B. Install individual wall-mounted switches and circuit breakers with tops at uniform height unless otherwise indicated.
- C. Install fuses in fusible devices.
- D. Comply with NFPA 70 and NECA 1.

3.4 IDENTIFICATION

- A. Comply with requirements in Section 260553 "Identification for Electrical Systems."
 - 1. Identify field-installed conductors, interconnecting wiring, and components; provide warning signs.
 - 2. Label each enclosure with engraved metal or laminated-plastic nameplate.

3.5 FIELD QUALITY CONTROL

- A. Perform tests and inspections.
- B. Tests and Inspections for Switches:
 - 1. Visual and Mechanical Inspection:
 - a. Inspect physical and mechanical condition.
 - b. Inspect anchorage, alignment, grounding, and clearances.
 - c. Verify that the unit is clean.
 - d. Verify blade alignment, blade penetration, travel stops, and mechanical operation.
 - e. Verify that fuse sizes and types match the Specifications and Drawings.
 - f. Verify that each fuse has adequate mechanical support and contact integrity.
 - g. Verify that operation and sequencing of interlocking systems is as described in the Specifications and shown on the Drawings.
 - h. Verify lubrication of moving current-carrying parts and moving and sliding surfaces.
- C. Enclosed switches and circuit breakers will be considered defective if they do not pass tests and inspections.

3.6 ADJUSTING

A. Adjust moving parts and operable components to function smoothly, and lubricate as recommended by manufacturer.

END OF SECTION 262816

SECTION 265119 - LED INTERIOR LIGHTING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

- A. Related Requirements:
 - 1. Section 260923 "Lighting Control Devices" for automatic control of lighting, including time switches, photoelectric relays, occupancy sensors, and multipole lighting relays and contactors.

1.3 DEFINITIONS

- A. CCT: Correlated color temperature.
- B. CRI: Color Rendering Index.
- C. Fixture: See "Luminaire."
- D. IP: International Protection or Ingress Protection Rating.
- E. LED: Light-emitting diode.
- F. Lumen: Measured output of lamp and luminaire, or both.
- G. Luminaire: Complete lighting unit, including lamp, reflector, and housing.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
 - 1. Arrange in order of luminaire designation.
 - 2. Include data on features, accessories, and finishes.
 - 3. Include physical description and dimensions of luminaires.
 - 4. Include emergency lighting units, including batteries and chargers.
 - 5. Include life, output (lumens, CCT, and CRI), and energy-efficiency data.
 - 6. Photometric data and adjustment factors based on laboratory tests.

a. Manufacturers' Certified Data: Photometric data certified by manufacturer's laboratory with a current accreditation under the National Voluntary Laboratory Accreditation Program for Energy Efficient Lighting Products.

1.5 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For luminaires and lighting systems to include in operation and maintenance manuals.
 - 1. Provide a list of all lamp types used on Project; use ANSI and manufacturers' codes.

1.6 QUALITY ASSURANCE

- A. Luminaire Photometric Data Testing Laboratory Qualifications: Luminaire manufacturer's laboratory that is accredited under the NVLAP for Energy Efficient Lighting Products.
- B. Provide luminaires from a single manufacturer for each luminaire type.
- C. Each luminaire type shall be binned within a three-step MacAdam Ellipse to ensure color consistency among luminaires.

1.7 DELIVERY, STORAGE, AND HANDLING

A. Protect finishes of exposed surfaces by applying a strippable, temporary protective covering before shipping.

1.8 WARRANTY

- A. Warranty: Manufacturer and Installer agree to repair or replace components of luminaires that fail in materials or workmanship within specified warranty period.
- B. Warranty Period: Five year(s) from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 LUMINAIRE REQUIREMENTS

- A. Refer to Luminaire Schedule on drawings for basis of design.
- B. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.
- C. Factory-Applied Labels: Comply with UL 1598. Include recommended lamps. Locate labels where they will be readily visible to service personnel, but not seen from normal viewing angles when lamps are in place.

- 1. Label shall include the following lamp characteristics:
 - a. "USE ONLY" and include specific lamp type.
 - b. Lamp diameter, shape, size, wattage, and coating.
 - c. CCT and CRI.
- D. Recessed luminaires shall comply with NEMA LE 4.

2.2 MATERIALS

A. Metal Parts:

- 1. Free of burrs and sharp corners and edges.
- 2. Sheet metal components shall be steel unless otherwise indicated.
- 3. Form and support to prevent warping and sagging.

B. Steel:

- 1. ASTM A 36/A 36M for carbon structural steel.
- 2. ASTM A 568/A 568M for sheet steel.

C. Stainless Steel:

- 1. 1. Manufacturer's standard grade.
- 2. 2. Manufacturer's standard type, ASTM A 240/240 M.
- D. Galvanized Steel: ASTM A 653/A 653M.
- E. Aluminum: ASTM B 209.

2.3 METAL FINISHES

A. Variations in finishes are unacceptable in the same piece. Variations in finishes of adjoining components are acceptable if they are within the range of approved Samples and if they can be and are assembled or installed to minimize contrast.

2.4 LUMINAIRE SUPPORT

- A. Comply with requirements in Section 260529 "Hangers and Supports for Electrical Systems" for channel and angle iron supports and nonmetallic channel and angle supports.
- B. Single-Stem Hangers: 1/2-inch steel tubing with swivel ball fittings and ceiling canopy. Finish same as luminaire.
- C. Wires: ASTM A 641/A 641 M, Class 3, soft temper, zinc-coated steel, 12 gage.
- D. Rod Hangers: 3/16-inch minimum diameter, cadmium-plated, threaded steel rod.

E. Hook Hangers: Integrated assembly matched to luminaire, line voltage, and equipment with threaded attachment, cord, and locking-type plug.

PART 3 - EXECUTION

3.1 EXAMINATION

- A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of the Work.
- B. Examine roughing-in for luminaire to verify actual locations of luminaire and electrical connections before luminaire installation.
- C. Proceed with installation only after unsatisfactory conditions have been corrected.

3.2 TEMPORARY LIGHTING

A. If approved by the Architect, use selected permanent luminaires for temporary lighting. When construction is sufficiently complete, clean luminaires used for temporary lighting and install new lamps.

3.3 INSTALLATION

- A. Comply with NECA 1.
- B. Install luminaires level, plumb, and square with ceilings and walls unless otherwise indicated.
- C. Install lamps in each luminaire.

D. Supports:

- 1. Sized and rated for luminaire weight.
- 2. Able to maintain luminaire position after cleaning and relamping.
- 3. Provide support for luminaire without causing deflection of ceiling or wall.
- 4. Luminaire-mounting devices shall be capable of supporting a horizontal force of 100 percent of luminaire weight and a vertical force of 400 percent of luminaire weight.

E. Flush-Mounted Luminaires:

- 1. Secured to outlet box.
- 2. Attached to ceiling structural members at four points equally spaced around circumference of luminaire.
- 3. Trim ring flush with finished surface.

F. Wall-Mounted Luminaires:

1. Attach per manufacturer's requirements.

2. Do not attach luminaires directly to gypsum board.

G. Suspended Luminaires:

1. Ceiling Mount:

- a. Two 5/32-inch- diameter aircraft cable supports.
- b. Pendant mount with 5/32-inch- diameter aircraft cable supports.
- 2. Pendants and Rods: Where longer than 48 inches, brace to limit swinging.
- 3. Stem-Mounted, Single-Unit Luminaires: Suspend with twin-stem hangers. Support with approved outlet box and accessories that hold stem and provide damping of luminaire oscillations. Support outlet box vertically to building structure using approved devices.
- 4. Continuous Rows of Luminaires: Use tubing or stem for wiring at one point and tubing or rod for suspension for each unit length of luminaire chassis, including one at each end.
- 5. Do not use ceiling grid as support for pendant luminaires. Connect support wires or rods to building structure.

H. Ceiling-Grid-Mounted Luminaires:

- 1. Secure to any required outlet box.
- 2. Use approved devices and support components to connect luminaire to ceiling grid and building structure in a minimum of four locations, spaced near corners of luminaire.
- I. Comply with requirements in Section 260519 "Low-Voltage Electrical Power Conductors and Cables" for wiring connections.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals. Comply with requirements for identification specified in Section 260553 "Identification for Electrical Systems."

3.5 FIELD QUALITY CONTROL

- A. Perform the following tests and inspections:
 - 1. Operational Test: After installing luminaires, switches, and accessories, and after electrical circuitry has been energized, test units to confirm proper operation.
 - 2. Test for Emergency Lighting: Interrupt power supply to demonstrate proper operation. Verify transfer from normal power to battery power and retransfer to normal.
- B. Luminaire will be considered defective if it does not pass operation tests and inspections.
- C. Prepare test and inspection reports.

3.6 ADJUSTING

- A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting the direction of aim of luminaires to suit occupied conditions. Make up to two visits to Project during other-than-normal hours for this purpose. Some of this work may be required during hours of darkness.
 - 1. During adjustment visits, inspect all luminaires. Replace lamps or luminaires that are defective.
 - 2. Parts and supplies shall be manufacturer's authorized replacement parts and supplies.
 - 3. Adjust the aim of luminaires in the presence of the Architect.

END OF SECTION 265119

SECTION 284621.11 - ADDRESSABLE FIRE-ALARM SYSTEMS

PART 1 - GENERAL

1.1 SUMMARY

A. Section Includes:

- 1. Fire-alarm control unit.
- 2. Manual fire-alarm boxes.
- 3. System smoke detectors.
- 4. Notification appliances.
- 5. Remote annunciator.
- 6. Addressable interface device.

1.2 ACTION SUBMITTALS

A. General Submittal Requirements:

- 1. Submittals shall be approved by authorities having jurisdiction prior to submitting them to Architect.
- 2. Shop Drawings shall be prepared by persons with the following qualifications:
 - a. Trained and certified by manufacturer in fire-alarm system design.
 - b. NICET-certified, fire-alarm technician; Level III minimum.
- B. Product Data: For each type of product, including furnished options and accessories.
- C. Shop Drawings: For fire-alarm system.
 - 1. Comply with recommendations and requirements in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - 2. Include plans, elevations, sections, details, and attachments to other work.
 - 3. Include details of equipment assemblies. Indicate dimensions, weights, loads, required clearances, method of field assembly, components, and locations. Indicate conductor sizes, indicate termination locations and requirements, and distinguish between factory and field wiring.
 - 4. Detail assembly and support requirements.
 - 5. Include voltage drop calculations for notification-appliance circuits.
 - 6. Include battery-size calculations.
 - 7. Include input/output matrix.
 - 8. Include statement from manufacturer that all equipment and components have been tested as a system and meet all requirements in this Specification and in NFPA 72.
 - 9. Include performance parameters and installation details for each detector.
 - 10. Verify that each duct detector is listed for complete range of air velocity, temperature, and humidity possible when air-handling system is operating.

- 11. Include floor plans to indicate final outlet locations showing address of each addressable device. Show size and route of cable and conduits and point-to-point wiring diagrams.
- D. Delegated-Design Submittal: For notification appliances and smoke and heat detectors, in addition to submittals listed above, indicate compliance with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation.
 - 1. Drawings showing the location of each notification appliance and smoke and heat detector, ratings of each, and installation details as needed to comply with listing conditions of the device.
 - 2. Design Calculations: Calculate requirements for selecting the spacing and sensitivity of detection, complying with NFPA 72. Calculate spacing and intensities for strobe signals and sound-pressure levels for audible appliances.
 - 3. Indicate audible appliances required to produce square wave signal per NFPA 72.

1.3 INFORMATIONAL SUBMITTALS

- A. Qualification Data: For Installer.
- B. Field quality-control reports.
- C. Sample warranty.

1.4 CLOSEOUT SUBMITTALS

- A. Operation and Maintenance Data: For fire-alarm systems and components to include in emergency, operation, and maintenance manuals.
 - 1. In addition to items specified in Section 017823 "Operation and Maintenance Data," include the following:
 - a. Comply with the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - b. Provide "Fire Alarm and Emergency Communications System Record of Completion Documents" according to the "Completion Documents" Article in the "Documentation" section of the "Fundamentals" chapter in NFPA 72.
 - c. Complete wiring diagrams showing connections between all devices and equipment.
 - d. Riser diagram.
 - e. Record copy of site-specific software.
 - f. Provide "Inspection and Testing Form" according to the "Inspection, Testing and Maintenance" chapter in NFPA 72, and include the following:
 - 1) Equipment tested.
 - 2) Frequency of testing of installed components.
 - 3) Frequency of inspection of installed components.
 - 4) Requirements and recommendations related to results of maintenance.

- 5) Manufacturer's user training manuals.
- g. Manufacturer's required maintenance related to system warranty requirements.
- h. Abbreviated operating instructions for mounting at fire-alarm control unit and each annunciator unit.

1.5 QUALITY ASSURANCE

- A. Installer Qualifications: Installation shall be by personnel certified by NICET as fire-alarm Level III technician.
- B. NFPA Certification: Obtain certification according to NFPA 72 by a UL-listed alarm company.

1.6 WARRANTY

- A. Special Warranty: Manufacturer agrees to repair or replace fire-alarm system equipment and components that fail in materials or workmanship within specified warranty period.
 - 1. Warranty Extent: All equipment and components not covered in the Maintenance Service Agreement.
 - 2. Warranty Period: Five years from date of Substantial Completion.

PART 2 - PRODUCTS

2.1 SYSTEM DESCRIPTION

- A. Source Limitations for Fire-Alarm System and Components: Components shall be compatible with, and operate as an extension of, existing system. Provide system manufacturer's certification that all components provided have been tested as, and will operate as, a system.
- B. Noncoded, UL-certified addressable system, with multiplexed signal transmission and horn/strobe evacuation.
- C. Automatic sensitivity control of certain smoke detectors.
- D. All components provided shall be listed for use with the selected system.
- E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, by a qualified testing agency, and marked for intended location and application.

2.2 SYSTEMS OPERATIONAL DESCRIPTION

- A. Fire-alarm signal initiation shall be by one or more of the following devices:
 - 1. Manual stations.
 - 2. Heat detectors.

CITY OF SUFFOLK BENNETT'S CREEK RECREATION CENTER RENOVATION 215021.00

- 3. Smoke detectors.
- 4. Duct smoke detectors.
- 5. Automatic sprinkler system water flow.
- 6. Fire-extinguishing system operation.
- 7. Fire standpipe system.

B. Fire-alarm signal shall initiate the following actions:

- 1. Continuously operate alarm notification appliances.
- 2. Identify alarm and specific initiating device at fire-alarm control unit and remote annunciators.
- 3. Transmit an alarm signal to the remote alarm receiving station.
- 4. Unlock electric door locks in designated egress paths.
- 5. Release fire and smoke doors held open by magnetic door holders.
- 6. Switch heating, ventilating, and air-conditioning equipment controls to fire-alarm mode.
- 7. Close smoke dampers in air ducts of designated air-conditioning duct systems.
- 8. Activate emergency shutoffs for gas and fuel supplies.
- 9. Record events in the system memory.

C. Supervisory signal initiation shall be by one or more of the following devices and actions:

- 1. Valve supervisory switch.
- 2. Loss of communication with any panel on the network.

D. System trouble signal initiation shall be by one or more of the following devices and actions:

- 1. Open circuits, shorts, and grounds in designated circuits.
- 2. Opening, tampering with, or removing alarm-initiating and supervisory signal-initiating devices.
- 3. Loss of communication with any addressable sensor, input module, relay, control module, or remote annunciator.
- 4. Loss of primary power at fire-alarm control unit.
- 5. Ground or a single break in internal circuits of fire-alarm control unit.
- 6. Abnormal ac voltage at fire-alarm control unit.
- 7. Break in standby battery circuitry.
- 8. Failure of battery charging.
- 9. Abnormal position of any switch at fire-alarm control unit or annunciator.

E. System Supervisory Signal Actions:

- 1. Initiate notification appliances.
- 2. Identify specific device initiating the event at fire-alarm control unit and remote annunciators.
- 3. After a time delay of 200 seconds, transmit a trouble or supervisory signal to the remote alarm receiving station.

2.3 FIRE-ALARM CONTROL UNIT

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Gamewell FCI by Honeywell.
 - 2. Notifier.
 - 3. SimplexGrinnell LP.
- B. General Requirements for Fire-Alarm Control Unit:
 - 1. Field-programmable, microprocessor-based, modular, power-limited design with electronic modules, complying with UL 864.
 - 2. Addressable Initiation Device Circuits: The FACP shall indicate which communication zones have been silenced and shall provide selective silencing of alarm notification appliance by building communication zone.
 - 3. Addressable Control Circuits for Operation of Notification Appliances and Mechanical Equipment: The FACP shall be listed for releasing service.
- C. Alphanumeric Display and System Controls: Arranged for interface between human operator at fire-alarm control unit and addressable system components including annunciation and supervision. Display alarm, supervisory, and component status messages and the programming and control menu.
 - 1. Annunciator and Display: Liquid-crystal type, 80 characters, minimum.
 - 2. Keypad: Arranged to permit entry and execution of programming, display, and control commands.
- D. Initiating-Device, Notification-Appliance, and Signaling-Line Circuits:
 - 1. Pathway Class Designations: NFPA 72, Class B.
 - 2. Pathway Survivability: Level 1.
- E. Notification-Appliance Circuit:
 - 1. Audible appliances shall sound in a three-pulse temporal pattern, as defined in NFPA 72.
 - 2. Where notification appliances provide signals to sleeping areas, the alarm signal shall be a 520-Hz square wave with an intensity 15 dB above the average ambient sound level or 5 dB above the maximum sound level, or at least 75 dBA, whichever is greater, measured at the pillow.
 - 3. Visual alarm appliances shall flash in synchronization where multiple appliances are in the same field of view, as defined in NFPA 72.
- F. Transmission to Remote Alarm Receiving Station: Automatically transmit alarm, supervisory, and trouble signals to a remote alarm station.
- G. Primary Power: 24-V dc obtained from 120-V ac service and a power-supply module. Initiating devices, notification appliances, signaling lines, trouble signals, supervisory signals supervisory and digital alarm communicator transmitters shall be powered by 24-V dc source.

- 1. Alarm current draw of entire fire-alarm system shall not exceed 80 percent of the power-supply module rating.
- H. Secondary Power: 24-V dc supply system with batteries, automatic battery charger, and automatic transfer switch.

2.4 MANUAL FIRE-ALARM BOXES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Gamewell FCI by Honeywell.
 - 2. Notifier.
 - 3. SimplexGrinnell LP.
- B. General Requirements for Manual Fire-Alarm Boxes: Comply with UL 38.
 - 1. Single-action mechanism, pull-lever type; with integral addressable module arranged to communicate manual-station status (normal, alarm, or trouble) to fire-alarm control unit.
 - 2. Station Reset: Key- or wrench-operated switch.

2.5 SYSTEM SMOKE DETECTORS

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. Gamewell FCI by Honeywell.
 - 2. Notifier.
 - 3. SimplexGrinnell LP.
- B. General Requirements for System Smoke Detectors:
 - 1. Comply with UL 268; operating at 24-V dc, nominal.
 - 2. Detectors shall be two-wire type.
 - 3. Integral Addressable Module: Arranged to communicate detector status (normal, alarm, or trouble) to fire-alarm control unit.
 - 4. Self-Restoring: Detectors do not require resetting or readjustment after actuation to restore them to normal operation.
 - 5. Integral Visual-Indicating Light: LED type, indicating detector has operated.

C. Photoelectric Smoke Detectors:

- 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
- 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.

- b. Device type.
- c. Present average value.
- d. Present sensitivity selected.
- e. Sensor range (normal, dirty, etc.).
- D. Duct Smoke Detectors: Photoelectric type complying with UL 268A.
 - 1. Detector address shall be accessible from fire-alarm control unit and shall be able to identify the detector's location within the system and its sensitivity setting.
 - 2. An operator at fire-alarm control unit, having the designated access level, shall be able to manually access the following for each detector:
 - a. Primary status.
 - b. Device type.
 - c. Present average value.
 - d. Present sensitivity selected.
 - e. Sensor range (normal, dirty, etc.).
 - 3. Weatherproof Duct Housing Enclosure: NEMA 250, Type 4X; NRTL listed for use with the supplied detector for smoke detection in HVAC system ducts.
 - 4. Each sensor shall have multiple levels of detection sensitivity.
 - 5. Sampling Tubes: Design and dimensions as recommended by manufacturer for specific duct size, air velocity, and installation conditions where applied.
 - 6. Relay Fan Shutdown: Fully programmable relay rated to interrupt fan motor-control circuit.

2.6 NOTIFICATION APPLIANCES

- A. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to the following:
 - 1. SimplexGrinnell LP.
 - 2. Wheelock: a brand of Eaton.
- B. General Requirements for Notification Appliances: Connected to notification-appliance signal circuits, zoned as indicated, equipped for mounting as indicated, and with screw terminals for system connections.
 - 1. Combination Devices: Factory-integrated audible and visible devices in a single-mounting assembly, equipped for mounting as indicated, and with screw terminals for system connections.
- C. Horns: Electric-vibrating-polarized type, 24-V dc; with provision for housing the operating mechanism behind a grille. Comply with UL 464.
- D. Visible Notification Appliances: Xenon strobe lights complying with UL 1971, with clear or nominal white polycarbonate lens mounted on an aluminum faceplate. The word "FIRE" is engraved in minimum 1-inch- high letters on the lens.

- 1. Mounting: Wall mounted unless otherwise indicated.
- 2. Flashing shall be in a temporal pattern, synchronized with other units.
- 3. Strobe Leads: Factory connected to screw terminals.
- 4. Mounting Faceplate: Factory finished, red.

2.7 REMOTE ANNUNCIATOR

- A. Description: Annunciator functions shall match those of fire-alarm control unit for alarm, supervisory, and trouble indications. Manual switching functions shall match those of fire-alarm control unit, including acknowledging, silencing, resetting, and testing.
 - 1. Mounting: Flush cabinet, NEMA 250, Type 1.
- B. Display Type and Functional Performance: Alphanumeric display and LED indicating lights shall match those of fire-alarm control unit. Provide controls to acknowledge, silence, reset, and test functions for alarm, supervisory, and trouble signals.

2.8 ADDRESSABLE INTERFACE DEVICE

A. General:

- 1. Include address-setting means on the module.
- 2. Store an internal identifying code for control panel use to identify the module type.
- 3. Listed for controlling HVAC fan motor controllers.
- B. Monitor Module: Microelectronic module providing a system address for alarm-initiating devices for wired applications with normally open contacts.
- C. Integral Relay: Capable of providing a direct signal to circuit-breaker shunt trip for power shutdown.
 - 1. Allow the control panel to switch the relay contacts on command.
 - 2. Have a minimum of two normally open and two normally closed contacts available for field wiring.

D. Control Module:

- 1. Operate notification devices.
- 2. Operate solenoids for use in sprinkler service.

2.9 DIGITAL ALARM COMMUNICATOR TRANSMITTER

- A. Digital alarm communicator transmitter shall be acceptable to the remote central station and shall comply with UL 632.
- B. Functional Performance: Unit shall receive an alarm, supervisory, or trouble signal from firealarm control unit and automatically capture one telephone line(s) and dial a preset number for a

remote central station. When contact is made with central station(s), signals shall be transmitted. If service on either line is interrupted for longer than 45 seconds, transmitter shall initiate a local trouble signal and transmit the signal indicating loss of telephone line to the remote alarm receiving station over the remaining line. Transmitter shall automatically report telephone service restoration to the central station. If service is lost on both telephone lines, transmitter shall initiate the local trouble signal.

- C. Local functions and display at the digital alarm communicator transmitter shall include the following:
 - 1. Verification that both telephone lines are available.
 - 2. Programming device.
 - 3. LED display.
 - 4. Manual test report function and manual transmission clear indication.
 - 5. Communications failure with the central station or fire-alarm control unit.
- D. Digital data transmission shall include the following:
 - 1. Address of the alarm-initiating device.
 - 2. Address of the supervisory signal.
 - 3. Address of the trouble-initiating device.
 - 4. Loss of ac supply.
 - 5. Loss of power.
 - 6. Low battery.
 - 7. Abnormal test signal.
 - 8. Communication bus failure.
- E. Secondary Power: Integral rechargeable battery and automatic charger.
- F. Self-Test: Conducted automatically every 24 hours with report transmitted to central station.

PART 3 - EXECUTION

3.1 EQUIPMENT INSTALLATION

- A. Comply with NFPA 72, NFPA 101, and requirements of authorities having jurisdiction for installation and testing of fire-alarm equipment. Install all electrical wiring to comply with requirements in NFPA 70 including, but not limited to, Article 760, "Fire Alarm Systems."
- B. Install wall-mounted equipment, with tops of cabinets not more than 78 inches above the finished floor.
- C. Manual Fire-Alarm Boxes:
 - 1. Install manual fire-alarm box in the normal path of egress within 60 inches of the exit doorway.
 - 2. Mount manual fire-alarm box on a background of a contrasting color.

- 3. The operable part of manual fire-alarm box shall be between 42 inches and 48 inches above floor level. All devices shall be mounted at the same height unless otherwise indicated.
- D. Smoke- or Heat-Detector Spacing: Comply with NFPA 72.
- E. Duct Smoke Detectors: Comply with NFPA 72 and NFPA 90A. Install sampling tubes so they extend the full width of duct. Tubes more than 36 inches long shall be supported at both ends.
- F. Remote Status and Alarm Indicators: Install in a visible location near each smoke detector, sprinkler water-flow switch, and valve-tamper switch that is not readily visible from normal viewing position.
- G. Audible Alarm-Indicating Devices: Install not less than 6 inches below the ceiling. Install bells and horns on flush-mounted back boxes with the device-operating mechanism concealed behind a grille. Install all devices at the same height unless otherwise indicated.
- H. Visible Alarm-Indicating Devices: Install adjacent to each alarm bell or alarm horn and at least 6 inches below the ceiling. Install all devices at the same height unless otherwise indicated.
- I. Device Location-Indicating Lights: Locate in public space near the device they monitor.

3.2 PATHWAYS

- A. Pathways above recessed ceilings and in nonaccessible locations may be routed exposed.
 - 1. Exposed pathways located less than 96 inches above the floor shall be installed in EMT.
- B. Pathways shall be installed in EMT.
- C. Exposed EMT shall be painted red enamel.

3.3 CONNECTIONS

- A. Make addressable connections with a supervised interface device to the following devices and systems. Install the interface device less than 36 inches from the device controlled. Make an addressable confirmation connection when such feedback is available at the device or system being controlled.
 - 1. Smoke dampers in air ducts of designated HVAC duct systems.
 - 2. Alarm-initiating connection to activate emergency shutoffs for gas and fuel supplies.
 - 3. Supervisory connections at valve supervisory switches.
 - 4. Supervisory connections at fire-extinguisher locations.

3.4 IDENTIFICATION

A. Identify system components, wiring, cabling, and terminals.

B. Install framed instructions in a location visible from fire-alarm control unit.

3.5 GROUNDING

- A. Ground fire-alarm control unit and associated circuits; comply with IEEE 1100. Install a ground wire from main service ground to fire-alarm control unit.
- B. Ground shielded cables at the control panel location only. Insulate shield at device location.

3.6 FIELD QUALITY CONTROL

- A. Field tests shall be witnessed by authorities having jurisdiction.
- B. Perform the following tests and inspections:
 - 1. Visual Inspection: Conduct visual inspection prior to testing.
 - a. Inspection shall be based on completed record Drawings and system documentation that is required by NFPA 72 in its "Completion Documents, Preparation" table in the "Documentation" section of the "Fundamentals" chapter.
 - b. Comply with the "Visual Inspection Frequencies" table in the "Inspection" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72; retain the "Initial/Reacceptance" column and list only the installed components.
 - 2. System Testing: Comply with the "Test Methods" table in the "Testing" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
 - 3. Factory-authorized service representative shall prepare the "Fire Alarm System Record of Completion" in the "Documentation" section of the "Fundamentals" chapter in NFPA 72 and the "Inspection and Testing Form" in the "Records" section of the "Inspection, Testing and Maintenance" chapter in NFPA 72.
- C. Reacceptance Testing: Perform reacceptance testing to verify the proper operation of added or replaced devices and appliances.
- D. Fire-alarm system will be considered defective if it does not pass tests and inspections.
- E. Prepare test and inspection reports.

3.7 SOFTWARE SERVICE AGREEMENT

- A. Comply with UL 864.
- B. Technical Support: Beginning at Substantial Completion, service agreement shall include software support for two years.
- C. Upgrade Service: At Substantial Completion, update software to latest version. Install and program software upgrades that become available within two years from date of Substantial

Completion. Upgrading software shall include operating system and new or revised licenses for using software.

1. Upgrade Notice: At least 30 days to allow Owner to schedule access to system and to upgrade computer equipment if necessary.

3.8 DEMONSTRATION

A. Train Owner's maintenance personnel to adjust, operate, and maintain fire-alarm system.

END OF SECTION 284621.11

SECTION 311000 - SITE CLEARING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Protecting existing vegetation to remain.
- 2. Removing existing vegetation.
- 3. Clearing and grubbing.
- 4. Stripping and stockpiling topsoil.
- 5. Removing above- and below-grade site improvements.
- 6. Temporary erosion- and sedimentation-control measures.

B. Related Sections:

- 1. Division 01 Section "Temporary Facilities and Controls" for temporary utility services, construction and support facilities.
- 2. Division 31 Section "Earth Moving."

1.3 DEFINITIONS

- A. Subsoil: All soil beneath the topsoil layer of the soil profile, and typified by the lack of organic matter and soil organisms.
- B. Surface Soil: Soil that is present at the top layer of the existing soil profile at the Project site. In undisturbed areas, the surface soil is typically topsoil; but in disturbed areas such as urban environments, the surface soil can be subsoil.
- C. Topsoil: Top layer of the soil profile consisting of existing native surface topsoil or existing inplace surface soil and is the zone where plant roots grow. Its appearance is generally friable, pervious, and black or a darker shade of brown, gray, or red than underlying subsoil; reasonably free of subsoil, clay lumps, gravel, and other objects more than 2 inches in diameter; and free of subsoil and weeds, roots, toxic materials, or other nonsoil materials.
- D. Plant-Protection Zone: Area surrounding individual trees, groups of trees, shrubs, or other vegetation to be protected during construction, and indicated on Drawings.

- E. Tree-Protection Zone: Area surrounding individual trees or groups of trees to be protected during construction, and defined by a circle concentric with each tree with a radius 1.5 times the diameter of the drip line unless otherwise indicated.
- F. Vegetation: Trees, shrubs, groundcovers, grass, and other plants.

1.4 MATERIAL OWNERSHIP

A. Except for stripped topsoil and other materials indicated to be stockpiled or otherwise remain Owner's property, cleared materials shall become Contractor's property and shall be removed from Project site.

1.5 QUALITY ASSURANCE

A. Preinstallation Conference: Conduct conference at Project site.

1.6 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, and other adjacent occupied or used facilities during site-clearing operations.
 - 1. Do not close or obstruct streets, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify Miss Utility for area where Project is located before site clearing.
- C. Do not commence site clearing operations until temporary erosion- and sedimentation-control measures are in place.
- D. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- E. Do not direct vehicle or equipment exhaust towards protection zones.
- F. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

G. Soil Stripping, Handling, and Stockpiling: Perform only when the topsoil is dry or slightly moist.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Satisfactory Soil Material: Requirements for satisfactory soil material are specified in Division 31 Section "Earth Moving."
 - 1. Obtain approved borrow soil material off-site when satisfactory soil material is not available on-site.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect and maintain benchmarks and survey control points from disturbance during construction.
- B. Locate and clearly identify trees, shrubs, and other vegetation to remain. Flag each tree trunk at 54 inches above the ground.

3.2 TEMPORARY EROSION AND SEDIMENTATION CONTROL

- A. Provide temporary erosion- and sedimentation-control measures to prevent soil erosion and discharge of soil-bearing water runoff or airborne dust to adjacent properties according to erosion- and sedimentation-control Drawings and requirements of authorities having jurisdiction.
- B. Inspect, maintain, and repair erosion- and sedimentation-control measures during construction until permanent vegetation has been established.
- C. Remove erosion and sedimentation controls and restore and stabilize areas disturbed during removal.

3.3 CLEARING AND GRUBBING

- A. Remove obstructions, trees, shrubs, and other vegetation to permit installation of new construction.
 - 1. Do not remove trees, shrubs, and other vegetation indicated to remain or to be relocated.
 - 2. Grind down stumps and remove roots, obstructions, and debris to a depth of 18 inches below exposed subgrade.
 - 3. Use only hand methods for grubbing within protection zones.

4. Chip removed tree branches and dispose of off-site.

3.4 TOPSOIL STRIPPING

- A. Remove grass before stripping topsoil.
- B. Strip topsoil as required in a manner to prevent intermingling with underlying subsoil or other waste materials.
- C. Stockpile topsoil away from edge of excavations without intermixing with subsoil. Grade and shape stockpiles to drain surface water. Cover to prevent windblown dust and erosion by water.
 - 1. Do not stockpile topsoil within protection zones.
 - 2. Stockpile surplus topsoil to allow for respreading deeper topsoil.

3.5 SITE IMPROVEMENTS

A. Remove existing above- and below-grade improvements as indicated and necessary to facilitate new construction.

3.6 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus soil material, unsuitable topsoil, obstructions, demolished materials, and waste materials including trash and debris, and legally dispose of them off Owner's property.
- B. Separate recyclable materials produced during site clearing from other nonrecyclable materials. Store or stockpile without intermixing with other materials and transport them to recycling facilities. Do not interfere with other Project work.

END OF SECTION 311000

SECTION 312000 - EARTH MOVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Preparing subgrades for slabs-on-grade, walks, pavements, and turf and grasses.
- 2. Excavating and backfilling for buildings and structures.
- 3. Excavating and backfilling trenches for utilities.

B. Related Sections:

- 1. Division 01 Section "Temporary Facilities and Controls" for temporary controls, utilities, and support facilities.
- 2. Division 31 Section "Site Clearing" for site stripping, grubbing, stripping and stockpiling topsoil, and removal of above- and below-grade improvements and utilities.

1.3 DEFINITIONS

- A. Backfill: Soil material or controlled low-strength material used to fill an excavation.
 - 1. Initial Backfill: Backfill placed beside and over pipe in a trench, including haunches to support sides of pipe.
 - 2. Final Backfill: Backfill placed over initial backfill to fill a trench.
- B. Bedding Course: Aggregate layer placed over the excavated subgrade in a trench before laying pipe.
- C. Borrow Soil: Satisfactory soil imported from off-site for use as fill or backfill.
- D. Excavation: Removal of material encountered above subgrade elevations and to lines and dimensions indicated.
 - 1. Authorized Additional Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions as directed by Engineer. Authorized additional excavation and replacement material will be paid for according to Contract provisions.
 - 2. Bulk Excavation: Excavation more than 10 feet in width and more than 30 feet in length.

EARTH MOVING 312000 - 1

- 3. Unauthorized Excavation: Excavation below subgrade elevations or beyond indicated lines and dimensions without direction by Engineer. Unauthorized excavation, as well as remedial work directed by Engineer, shall be without additional compensation.
- E. Fill: Soil materials used to raise existing grades.
- F. Rock: Rock material in beds, ledges, unstratified masses, conglomerate deposits, and boulders of rock material 3/4 cu. yd. or more in volume that exceed a standard penetration resistance of 100 blows/2 inches when tested by a geotechnical testing agency, according to ASTM D 1586.
- G. Structures: Buildings, footings, foundations, retaining walls, slabs, tanks, curbs, mechanical and electrical appurtenances, or other man-made stationary features constructed above or below the ground surface.
- H. Subgrade: Uppermost surface of an excavation or the top surface of a fill or backfill immediately below topsoil materials.
- I. Utilities: On-site underground pipes, conduits, ducts, and cables, as well as underground services within buildings.

1.4 SUBMITTALS

- A. Field quality control test reports as specified in Section 3.20 "FIELD QUALITY CONTROL."
- B. Blasting plan approved by authorities having jurisdiction.
- C. Seismic survey report from seismic survey agency.

1.5 QUALITY ASSURANCE

- A. Blasting: Comply with applicable requirements in NFPA 495, "Explosive Materials Code," and prepare a blasting plan reporting the following:
 - 1. Types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 - 2. Seismographic monitoring during blasting operations.
- B. Seismic Survey Agency: An independent testing agency, acceptable to authorities having jurisdiction, experienced in seismic surveys and blasting procedures to perform the following services:
 - 1. Report types of explosive and sizes of charge to be used in each area of rock removal, types of blasting mats, sequence of blasting operations, and procedures that will prevent damage to site improvements and structures on Project site and adjacent properties.
 - 2. Seismographic monitoring during blasting operations.

EARTH MOVING 312000 - 2

C. Geotechnical Testing Agency Qualifications: Qualified according to ASTM E 329 and ASTM D 3740 for testing indicated.

1.6 PROJECT CONDITIONS

- A. Traffic: Minimize interference with adjoining roads, streets, walks, and other adjacent occupied or used facilities during earth moving operations.
 - 1. Do not close or obstruct streets, walks, or other adjacent occupied or used facilities without permission from Owner and authorities having jurisdiction.
 - 2. Provide alternate routes around closed or obstructed traffic ways if required by Owner or authorities having jurisdiction.
- B. Utility Locator Service: Notify "Miss Utility" for area where Project is located before beginning earth moving operations.
- C. Do not commence earth moving operations until temporary erosion- and sedimentation-control measures are in place.
- D. The following practices are prohibited within protection zones:
 - 1. Storage of construction materials, debris, or excavated material.
 - 2. Parking vehicles or equipment.
 - 3. Foot traffic.
 - 4. Erection of sheds or structures.
 - 5. Impoundment of water.
 - 6. Excavation or other digging unless otherwise indicated.
 - 7. Attachment of signs to or wrapping materials around trees or plants unless otherwise indicated.
- E. Do not direct vehicle or equipment exhaust towards protection zones.
- F. Prohibit heat sources, flames, ignition sources, and smoking within or near protection zones.

PART 2 - PRODUCTS

2.1 SOIL MATERIALS

- A. General: Provide borrow soil materials when sufficient satisfactory soil materials are not available from excavations.
- B. Satisfactory Soils: Shall be free of rock or gravel larger than 3 inches in any dimension, debris, roots, waste, frozen materials, organic material, vegetation, and other deleterious matter, or as defined in the Geotechnical Report.
- **C.** Unsatisfactory soils also include satisfactory soils not maintained within 2 percent of optimum moisture content at time of compaction.

- D. Engineered Fill: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; with at least 90 percent passing a 1-1/2-inch sieve and not more than 12 percent passing a No. 200 sieve.
- E. Bedding Course: Naturally or artificially graded mixture of natural or crushed gravel, crushed stone, and natural or crushed sand; ASTM D 2940; except with 100 percent passing a 1-inch sieve and not more than 8 percent passing a No. 200 sieve.
- F. Drainage Course: Narrowly graded mixture of washed crushed stone, or crushed or uncrushed gravel; ASTM D 448; coarse-aggregate grading Size 57; with 100 percent passing a 1-1/2-inch sieve and 0 to 5 percent passing a No. 8 sieve.
- G. Filter Material: Narrowly graded mixture of natural or crushed gravel, or crushed stone and natural sand; ASTM D 448; coarse-aggregate grading Size 67; with 100 percent passing a 1-inch sieve and 0 to 5 percent passing a No. 4 sieve.
- H. Sand: ASTM C 33; fine aggregate.
- I. Impervious Fill: Clayey gravel and sand mixture capable of compacting to a dense state.

2.2 ACCESSORIES

- A. Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.
- B. Detectable Warning Tape: Acid- and alkali-resistant, polyethylene film warning tape manufactured for marking and identifying underground utilities, a minimum of 6 inches wide and 4 mils thick, continuously inscribed with a description of the utility, with metallic core encased in a protective jacket for corrosion protection, detectable by metal detector when tape is buried up to 30 inches deep; colored as follows:
 - 1. Red: Electric.
 - 2. Yellow: Gas, oil, steam, and dangerous materials.
 - 3. Orange: Telephone and other communications.
 - 4. Blue: Water systems.
 - 5. Green: Sewer systems.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, undermining, washout, and other hazards created by earth moving operations.
- B. Protect and maintain erosion and sedimentation controls during earth moving operations.
- C. Protect subgrades and foundation soils from freezing temperatures and frost. Remove temporary protection before placing subsequent materials.

3.2 DEWATERING

- A. Prevent surface water and ground water from entering excavations, from ponding on prepared subgrades, and from flooding Project site and surrounding area.
- B. Protect subgrades from softening, undermining, washout, and damage by rain or water accumulation.
 - 1. Reroute surface water runoff away from excavated areas. Do not allow water to accumulate in excavations. Do not use excavated trenches as temporary drainage ditches.

3.3 EXPLOSIVES

- A. Explosives: Obtain written permission from authorities having jurisdiction before bringing explosives to Project site or using explosives on Project site.
 - 1. Perform blasting without damaging adjacent structures, property, or site improvements.
 - 2. Perform blasting without weakening the bearing capacity of rock subgrade and with the least-practicable disturbance to rock to remain.

3.4 EXCAVATION, GENERAL

- A. Unclassified Excavation: Excavate to subgrade elevations regardless of the character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions. No changes in the Contract Sum or the Contract Time will be authorized for rock excavation or removal of obstructions.
 - 1. If excavated materials intended for fill and backfill include unsatisfactory soil materials and rock, replace with satisfactory soil materials.
 - 2. Remove rock to lines and grades indicated to permit installation of permanent construction without exceeding the following dimensions:
 - a. 24 inches outside of concrete forms other than at footings.
 - b. 12 inches outside of concrete forms at footings.

- c. 6 inches outside of minimum required dimensions of concrete cast against grade.
- d. Outside dimensions of concrete walls indicated to be cast against rock without forms or exterior waterproofing treatments.
- e. 6 inches beneath bottom of concrete slabs-on-grade.
- f. 6 inches beneath pipe in trenches, and the greater of 24 inches wider than pipe or 42 inches wide.

3.5 EXCAVATION FOR STRUCTURES

- A. Excavate to indicated elevations and dimensions within a tolerance of plus or minus 1 inch. If applicable, extend excavations a sufficient distance from structures for placing and removing concrete formwork, for installing services and other construction, and for inspections.
 - 1. Excavations for Footings and Foundations: Do not disturb bottom of excavation. Excavate by hand to final grade just before placing concrete reinforcement. Trim bottoms to required lines and grades to leave solid base to receive other work.
 - 2. Excavation for Underground Tanks, Basins, and Utility Structures: Excavate to elevations and dimensions indicated within a tolerance of plus or minus 1 inch. Do not disturb bottom of excavations intended as bearing surfaces.
- B. Excavations at Edges of Tree- and Plant-Protection Zones:
 - 1. Excavate by hand to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.

3.6 EXCAVATION FOR UTILITY TRENCHES

- A. Excavate trenches to indicated gradients, lines, depths, and elevations.
 - 1. Beyond building perimeter, excavate trenches to allow installation of top of pipe below frost line.
- B. Excavate trenches to uniform widths to provide the following clearance on each side of pipe or conduit. Excavate trench walls vertically from trench bottom to 12 inches higher than top of pipe or conduit unless otherwise indicated.
 - 1. Clearance: 12 inches each side of pipe or conduit.
- C. Trench Bottoms: Excavate and shape trench bottoms to provide uniform bearing and support of pipes and conduit. Shape subgrade to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits. Remove projecting stones and sharp objects along trench subgrade.
 - 1. For pipes and conduit 6 inches or larger in nominal diameter, shape bottom of trench to support bottom 90 degrees of pipe or conduit circumference. Fill depressions with tamped sand backfill.

- 2. For flat-bottomed, multiple-duct conduit units, hand-excavate trench bottoms and support conduit on an undisturbed subgrade.
- 3. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.
- D. Trench Bottoms: Excavate trenches 4 inches deeper than bottom of pipe and conduit elevations to allow for bedding course. Hand-excavate deeper for bells of pipe.
 - 1. Excavate trenches 6 inches deeper than elevation required in rock or other unyielding bearing material to allow for bedding course.

E. Trenches in Tree- and Plant-Protection Zones:

- 1. Hand-excavate to indicated lines, cross sections, elevations, and subgrades. Use narrow-tine spading forks to comb soil and expose roots. Do not break, tear, or chop exposed roots. Do not use mechanical equipment that rips, tears, or pulls roots.
- 2. Do not cut main lateral roots or taproots; cut only smaller roots that interfere with installation of utilities.

3.7 SUBGRADE INSPECTION

- A. Notify Geotechnical Engineer when excavations have reached required subgrade.
- B. If Geotechnical Engineer determines that unsatisfactory soil is present, continue excavation and replace with compacted backfill or fill material as directed.
- C. Proof-roll subgrade below the building slabs and pavements with a pneumatic-tired and loaded 10-wheel, tandem-axle dump truck weighing not less than 15 tons to identify soft pockets and areas of excess yielding. Do not proof-roll wet or saturated subgrades.
 - 1. Completely proof-roll subgrade in one direction, repeating proof-rolling in direction perpendicular to first direction. Limit vehicle speed to 3 mph.
 - 2. Excavate soft spots, unsatisfactory soils, and areas of excessive pumping or rutting, as determined by Architect, and replace with compacted backfill or fill as directed.
- D. Authorized additional excavation and replacement material will be paid for according to Contract provisions
- E. Reconstruct subgrades damaged by freezing temperatures, frost, rain, accumulated water, or construction activities, as directed by Architect, without additional compensation.

3.8 STORAGE OF SOIL MATERIALS

- A. Stockpile borrow soil materials and excavated satisfactory soil materials without intermixing. Place, grade, and shape stockpiles to drain surface water. Cover to prevent windblown dust.
 - 1. Stockpile soil materials away from edge of excavations. Do not store within drip line of remaining trees.

3.9 BACKFILL

- A. Place and compact backfill in excavations promptly, but not before completing the following:
 - 1. Construction below finish grade including, where applicable, subdrainage, dampproofing, waterproofing, and perimeter insulation.
 - 2. Surveying locations of underground utilities for Record Documents.
 - 3. Inspecting underground utilities.
 - 4. Removing trash and debris.
 - 5. Removing temporary shoring and bracing, and sheeting.
- B. Place backfill on subgrades free of mud, frost, snow, or ice.

3.10 UTILITY TRENCH BACKFILL

- A. Place backfill on subgrades free of mud, frost, snow, or ice.
- B. Place and compact bedding course on trench bottoms and where indicated. Shape bedding course to provide continuous support for bells, joints, and barrels of pipes and for joints, fittings, and bodies of conduits.
- C. Trenches under Roadways: Provide 4-inch-thick, concrete-base slab support for piping or conduit less than 30 inches below surface of roadways.
- D. Backfill voids with satisfactory soil while removing shoring and bracing.
- E. Place and compact initial backfill of satisfactory soil, free of particles larger than 1 inch in any dimension, to a height of 12 inches over the pipe or conduit.
 - 1. Carefully compact initial backfill under pipe haunches and compact evenly up on both sides and along the full length of piping or conduit to avoid damage or displacement of piping or conduit. Coordinate backfilling with utilities inspection.
- F. Place and compact final backfill of satisfactory soil to final subgrade elevation.
- G. Install warning tape directly above utilities, 12 inches below finished grade, except 6 inches below subgrade under pavements and slabs.

3.11 SOIL FILL

- A. Plow, scarify, bench, or break up sloped surfaces steeper than 1 vertical to 4 horizontal so fill material will bond with existing material.
- B. Place and compact fill material in layers to required elevations as follows:
 - 1. Under grass and planted areas, use satisfactory soil material.
 - 2. Under walks and pavements, use satisfactory soil material.
 - 3. Under steps and ramps, use engineered fill.

- 4. Under building slabs, use engineered fill.
- 5. Under footings and foundations, use engineered fill.
- C. Place soil fill on subgrades free of mud, frost, snow, or ice.

3.12 SOIL MOISTURE CONTROL

- A. Uniformly moisten or aerate subgrade and each subsequent fill or backfill soil layer before compaction to within 2 percent of optimum moisture content.
 - 1. Do not place backfill or fill soil material on surfaces that are muddy, frozen, or contain frost or ice.
 - 2. Remove and replace, or scarify and air dry, otherwise satisfactory soil material that exceeds optimum moisture content by 2 percent and is too wet to compact to specified dry unit weight.

3.13 COMPACTION OF SOIL BACKFILLS AND FILLS

- A. Place backfill and fill soil materials in layers not more than 8 inches in loose depth for material compacted by heavy compaction equipment, and not more than 4 inches in loose depth for material compacted by hand-operated tampers.
- B. Place backfill and fill soil materials evenly on all sides of structures to required elevations, and uniformly along the full length of each structure.
- C. Compact soil materials to not less than the following percentages of maximum dry unit weight according to ASTM D 698 or ASTM D 1557:
 - 1. 95 percent by ASTM D 1557 beneath and within 25 feet of buildings and structures, including those shown for future construction.
 - 2. 95 percent by ASTM D 698 beneath pavements, walks, earthen dam embankments, and road shoulders, including those shown for future construction.
 - 3. 90 percent by ASTM D 698 in other unpaved areas.
 - 4. Under turf or unpaved areas, scarify and recompact top 6 inches below subgrade and compact each layer of backfill or fill soil material at 85 percent by ASTM D 698.
 - 5. For utility trenches, compact each layer of initial and final backfill soil material at 85 percent by ASTM D 698.

3.14 GRADING

- A. General: Uniformly grade areas to a smooth surface, free of irregular surface changes. Comply with compaction requirements and grade to cross sections, lines, and elevations indicated.
 - 1. Provide a smooth transition between adjacent existing grades and new grades.
 - 2. Cut out soft spots, fill low spots, and trim high spots to comply with required surface tolerances.

- B. Site Rough Grading: Slope grades to direct water away from buildings and to prevent ponding. Finish subgrades to required elevations within the following tolerances:
 - 1. Turf or Unpaved Areas: Plus or minus 1 inch.
 - 2. Walks: Plus or minus 1 inch.
 - 3. Pavements: Plus or minus 1/2 inch.
- C. Grading inside Building Lines: Finish subgrade to a tolerance of 1/2 inch when tested with a 10-foot straightedge.

3.15 SUBSURFACE DRAINAGE

A. Subdrainage Pipe: Specified in Division 33 Section "Storm Utility Drainage Piping."

3.16 FIELD QUALITY CONTROL

- A. Testing Agency: Contractor will engage a qualified geotechnical engineering testing agency to perform tests and inspections.
- B. Allow testing agency to inspect and test subgrades and each fill or backfill layer. Proceed with subsequent earth moving only after test results for previously completed work comply with requirements.
- C. Footing Subgrade: At footing subgrades, at least one test of each soil stratum will be performed to verify design bearing capacities. Subsequent verification and approval of other footing subgrades may be based on a visual comparison of subgrade with tested subgrade when approved by Engineer.
- D. Testing agency will test compaction of soils in place according to ASTM D 1556, ASTM D 2167, ASTM D 2922, and ASTM D 2937, as applicable. Tests will be performed at the following locations and frequencies:
 - 1. Paved and Building Slab Areas: At subgrade and at each compacted fill and backfill layer, at least one test for every 10,000 sq. ft. or less of paved area or building slab, but in no case fewer than three tests.
 - 2. Foundation Wall Backfill: At each compacted backfill layer, at least one test for every 100 feet or less of wall length, but no fewer than two tests.
 - 3. Trench Backfill: At each compacted initial and final backfill layer, at least one test for every 1,000 feet or less of trench length, but no fewer than two tests.
- E. When testing agency reports that subgrades, fills, or backfills have not achieved degree of compaction specified, scarify and moisten or aerate, or remove and replace soil materials to depth required; recompact and retest until specified compaction is obtained.

3.17 PROTECTION

- A. Protecting Graded Areas: Protect newly graded areas from traffic, freezing, and erosion. Keep free of trash and debris.
- B. Repair and reestablish grades to specified tolerances where completed or partially completed surfaces become eroded, rutted, settled, or where they lose compaction due to subsequent construction operations or weather conditions.
 - 1. Scarify or remove and replace soil material to depth as directed by Architect, reshape and recompact.
- C. Where settling occurs before Project correction period elapses, remove finished surfacing, backfill with additional soil material, compact, and reconstruct surfacing.
 - 1. Restore appearance, quality, and condition of finished surfacing to match adjacent work, and eliminate evidence of restoration to greatest extent possible.

3.18 DISPOSAL OF SURPLUS AND WASTE MATERIALS

- A. Remove surplus satisfactory soil and waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.
- B. Transport surplus satisfactory soil to designated storage areas on Owner's property. Stockpile or spread soil as directed by Architect.
 - 1. Remove waste materials, including unsatisfactory soil, trash, and debris, and legally dispose of them off Owner's property.

3.19 EROSION CONTROL

A. Comply with all local requirements and with the latest version of the Virginia Erosion and Sediment Control Handbook.

END OF SECTION 312000

SECTION 316329 - DRILLED CONCRETE PIERS AND SHAFTS

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.
- B. Section 033000 Cast-in-Place Concrete.

1.2 SUMMARY

- A. Section Includes:
 - 1. Dry-installed drilled piers.

1.3 PREINSTALLATION MEETINGS

- A. Preinstallation Conference: Conduct conference at Project site.
 - 1. Review methods and procedures related to drilled piers including, but not limited to, the following:
 - a. Review geotechnical report.
 - b. Discuss existing utilities and subsurface conditions.
 - c. Review coordination with temporary controls and protections.

1.4 ACTION SUBMITTALS

- A. Product Data: For each type of product.
- B. Design Mixtures: For each concrete mixture. Submit alternative design mixtures when characteristics of materials, Project conditions, weather, test results, or other circumstances warrant adjustments.
 - 1. Indicate amounts of mixing water to be withheld for later addition at Project site.
- C. Shop Drawings: For concrete reinforcement, detailing fabricating, bending, supporting, and placing.

1.5 INFORMATIONAL SUBMITTALS

A. Welding certificates.

- B. Material Certificates: From manufacturer, for the following:
 - 1. Cementitious materials.
 - 2. Admixtures.
 - 3. Steel reinforcement and accessories.
- C. Field quality-control reports.

1.6 CLOSEOUT SUBMITTALS

A. Record drawings.

1.7 QUALITY ASSURANCE

- A. Installer Qualifications: An experienced installer that has specialized in drilled-pier work.
- B. Testing Agency Qualifications: Qualified according to ASTM C 1077, ASTM D 3740, and ASTM E 329 for testing indicated.
- C. Welding Qualifications: Qualify procedures and personnel according to the following:
 - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel."
 - 2. AWS D1.4/D1.4M, "Structural Welding Code Reinforcing Steel."

1.8 FIELD CONDITIONS

- A. Existing Utilities: Locate existing underground utilities before excavating drilled piers. If utilities are to remain in place, provide protection from damage during drilled-pier operations.
 - 1. Should uncharted or incorrectly charted piping or other utilities be encountered during excavation, adapt drilling procedure if necessary to prevent damage to utilities. Cooperate with Owner and utility companies in keeping services and facilities in operation without interruption. Repair damaged utilities to satisfaction of utility owner.
- B. Interruption of Existing Utilities: Do not interrupt any utility to facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility according to requirements indicated:
 - 1. Notify Owner no fewer than twodays in advance of proposed interruption of utility.
 - 2. Do not proceed with interruption of utility without Owner's written permission.
- C. Project-Site Information: A geotechnical report has been prepared for this Project and is available for information only. The opinions expressed in this report are those of geotechnical engineer and represent interpretations of subsoil conditions, tests, and results of analyses conducted by geotechnical engineer. Owner is not responsible for interpretations or conclusions drawn from this data.

- 1. Make additional test borings and conduct other exploratory operations necessary for drilled piers.
- 2. The geotechnical report is included elsewhere in the Project Manual.
- D. Survey Work: Engage a qualified land surveyor or professional engineer to perform surveys, layouts, and measurements for drilled piers. Before excavating, lay out each drilled pier to lines and levels required. Record actual measurements of each drilled pier's location, shaft diameter, bottom and top elevations, deviations from specified tolerances, and other specified data.
 - 1. Record and maintain information pertinent to each drilled pier and indicate on record Drawings. Cooperate with Owner's testing and inspecting agency to provide data for required reports.

PART 2 - PRODUCTS

- 2.1 PERFORMANCE REQUIREMENTS
 - A. Drilled-Pier Standard: Comply with ACI 336.1 except as modified in this Section.
- 2.2 STEEL REINFORCEMENT: Refer to Section 033000 Cast-in-Place Concrete.
- 2.3 CONCRETE MATERIALS: Refer to Section 033000 Cast-in-Place Concrete.
- 2.4 STEEL CASINGS
 - A. Steel Pipe Casings: ASTM A 283/A 283M, Grade C, or ASTM A 36/A 36M, carbon-steel plate, with joints full-penetration welded according to AWS D1.1/D1.1M.
 - B. Corrugated-Steel Pipe Casings: ASTM A 929/A 929M, steel sheet, zinc coated.
 - C. Liners: Comply with ACI 336.1.
- 2.5 CONCRETE MIXTURES: Refer to Section 033000 Cast-in-Place Concrete as it relates to footing concrete.
- 2.6 REINFORCEMENT FABRICATION: Refer to Section 033000 Cast-in-Place Concrete.
- 2.7 CONCRETE MIXING: Refer to Section 033000 Cast-in-Place Concrete.

PART 3 - EXECUTION

3.1 PREPARATION

A. Protect structures, utilities, sidewalks, pavements, and other facilities from damage caused by settlement, lateral movement, vibration, and other hazards created by drilled-pier operations.

3.2 EXCAVATION

- A. Unclassified Excavation: Excavate to bearing elevations regardless of character of surface and subsurface conditions encountered. Unclassified excavated materials may include rock, soil materials, and obstructions.
 - Obstructions: Unclassified excavated materials may include removal of unanticipated boulders, concrete, masonry, or other subsurface obstructions. Payment for removing obstructions that cannot be removed by conventional augers fitted with soil or rock teeth, drilling buckets, or underreaming tools attached to drilling equipment of size, power, torque, and downthrust necessary for the Work is according to Contract provisions for changes in the Work.
- B. Prevent surface water from entering excavated shafts. Conduct water to site drainage facilities.
- C. Excavate shafts for drilled piers to indicated elevations. Remove loose material from bottom of excavation.
 - 1. Excavate bottom of drilled piers to level plane within 1:12 tolerance.
 - 2. Remove water from excavated shafts before concreting.
- D. Notify and allow testing and inspecting agency to test and inspect bottom of excavation. If unsuitable bearing stratum is encountered, make adjustments to drilled piers as determined by Architect.
 - 1. Do not excavate shafts deeper than elevations indicated unless approved by Architect.
 - 2. Payment for additional authorized excavation is according to Contract provisions for changes in the Work.
- E. Excavate shafts for closely spaced drilled piers and for drilled piers occurring in fragile or sand strata only after adjacent drilled piers are filled with concrete and allowed to set.
- F. Temporary Casings: At Contractor's option, install watertight steel casings of sufficient length and thickness to prevent water seepage into shaft; to withstand compressive, displacement, and withdrawal stresses; and to maintain stability of shaft walls.
 - 1. Remove temporary casings, maintained in plumb position, during concrete placement and before initial set of concrete, or leave temporary casings in place.
- G. Tolerances: Construct drilled piers to remain within ACI 336.1 tolerances.

1. If location or out-of-plumb tolerances are exceeded, provide corrective construction. Submit corrective construction proposals to Architect for review before proceeding.

3.3 PERMANENT STEEL CASING INSTALLATION

- A. Install permanent steel casings at Contractor's option of diameter not less than diameter of drilled pier.
 - 1. Install casings as excavation proceeds, to maintain sidewall stability.
 - 2. Fabricate bottom edge of lowest casing section with cutting shoe capable of penetrating rock and achieving water seal.
 - 3. Connect casing sections by continuous penetration welds to form watertight, continuous casing.
 - 4. Remove and replace or repair casings that have been damaged during installation and that could impair strength or efficiency of drilled pier.
 - 5. Fill annular void between casing and shaft wall with grout.
- B. Corrugated-Steel Casings: Provide corrugated-steel casings formed from zinc-coated steel sheet.
 - 1. Corrugated casings may be delivered in sections or panels of convenient length and field connected according to manufacturer's written instructions.

3.4 STEEL REINFORCEMENT INSTALLATION

- A. Comply with recommendations in CRSI's "Manual of Standard Practice" for fabricating, placing, and supporting reinforcement.
- B. Clean reinforcement of loose rust and mill scale, earth, and other materials that reduce or destroy bond with concrete.
- C. Fabricate and install reinforcing cages symmetrically about axis of shafts in a single unit.
- D. Accurately position, support, and secure reinforcement against displacement during concreting. Maintain minimum cover over reinforcement.
- E. Use templates to set anchor bolts, leveling plates, and other accessories furnished in work of other Sections. Provide blocking and holding devices to maintain required position during final concrete placement.
- F. Protect exposed ends of extended reinforcement, dowels, or anchor bolts from mechanical damage and exposure to weather.

3.5 CONCRETE PLACEMENT

A. Place concrete in continuous operation and without segregation immediately after inspection and approval of shaft by a qualified Special Inspector or testing agency.

- 1. Construct a construction joint if concrete placement is delayed more than one hour. Level top surface of concrete. Before placing remainder of concrete, clean surface laitance, roughen, and slush concrete with commercial bonding agent or with sand-cement grout mixed at ratio of 1:1.
- B. Dry Method: Place concrete to fall vertically down the center of drilled pier without striking sides of shaft or steel reinforcement.
 - 1. Where concrete cannot be directed down shaft without striking reinforcement, place concrete with chutes, tremies, or pumps.
 - 2. Vibrate top 60 inches (1500 mm) of concrete.
- C. Slurry Displacement Method (Contractor's option): Place concrete in slurry-filled shafts by tremie methods or pumping. Control placement operations to ensure that tremie or pump pipe is embedded no less than 60 inches (1500 mm) into concrete and that flow of concrete is continuous from bottom to top of drilled pier.
- D. Coordinate withdrawal of temporary casings with concrete placement to maintain at least a 60-inch (1500-mm) head of concrete above bottom of casing.
 - 1. Vibrate top 60 inches (1500 mm) of concrete after withdrawal of temporary casing.
- E. Screed concrete at cutoff elevation level and apply scoured, rough finish. Where cutoff elevation is above the ground elevation, form top section above grade and extend shaft to required elevation.
- F. Protect concrete work, according to ACI 301 (ACI 301M), from frost, freezing, or low temperatures that could cause physical damage or reduced strength.
 - 1. Do not use frozen materials or materials containing ice or snow. Do not place concrete on frozen subgrade or on subgrade containing frozen materials.
 - 2. Do not use calcium chloride, salt, or other mineral-containing antifreeze agents or chemical accelerators.
- G. If hot-weather conditions exist that would seriously impair quality and strength of concrete, place concrete according to ACI 301 (ACI 301M) to maintain delivered temperature of concrete at no more than 90 deg F (32 deg C).
 - 1. Place concrete immediately on delivery. Keep exposed concrete surfaces and formed shaft extensions moist by fog sprays, wet burlap, or other effective means for a minimum of seven days.

3.6 FIELD QUALITY CONTROL

- A. Special Inspections: Owner will engage a qualified special inspector to perform the following special inspections:
 - 1. Drilled piers.
 - 2. Excavation.

- 3. Concrete.
- 4. Steel reinforcement welding.
- B. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.
- C. Drilled-Pier Tests and Inspections: For each drilled pier, before concrete placement.
 - 1. Soil Testing: Bottom elevations, bearing capacities, and lengths of drilled piers indicated have been estimated from available soil data. Actual elevations and drilled-pier lengths and bearing capacities are determined by testing and inspecting agency. Final evaluations and approval of data are determined by Architect.
- D. Concrete Tests and Inspections: ASTM C 172/C 172M except modified for slump to comply with ASTM C 94/C 94M.
 - 1. Slump: ASTM C 143/C 143M; one test at point of placement for each compressive-strength test but no fewer than one test for each concrete load.
 - 2. Concrete Temperature: ASTM C 1064/C 1064M; one test hourly when air temperature is 40 deg F (4.4 deg C) and below and 80 deg F (27 deg C) and above, and one test for each set of compressive-strength specimens.
 - 3. Compression Test Specimens: ASTM C 31/C 31M; one set of four standard cylinders for each compressive-strength test unless otherwise indicated. Mold and store cylinders for laboratory-cured test specimens unless field-cured test specimens are required.
 - 4. Compressive-Strength Tests: ASTM C 39/C 39M; one set for each drilled pier but not more than one set for each truck load. Test one specimen at seven days, test two specimens at 28 days, and retain one specimen in reserve for later testing if required.
 - 5. If frequency of testing provides fewer than five strength tests for a given class of concrete, conduct tests from at least five randomly selected batches or from each batch if fewer than five are used.
 - 6. If strength of field-cured cylinders is less than 85 percent of companion laboratory-cured cylinders, Contractor shall evaluate operations and provide corrective procedures for protecting and curing in-place concrete.
 - 7. Strength of each concrete mixture is satisfactory if every average of any three consecutive compressive-strength tests equals or exceeds specified compressive strength and no compressive-strength test value falls below specified compressive strength by more than 500 psi (3.4 MPa).
 - 8. Report test results in writing to Architect, concrete manufacturer, and Contractor within 48 hours of testing. List Project identification name and number, date of concrete placement, name of concrete testing and inspecting agency, location of concrete batch in Work, design compressive strength at 28 days, concrete mixture proportions and materials, compressive breaking strength, and type of break for both 7- and 28-day tests in reports of compressive-strength tests.
 - 9. Nondestructive Testing: Impact hammer, sonoscope, or other nondestructive device may be permitted by Architect but not be used as sole basis for approval or rejection of concrete.
 - 10. Additional Tests: Testing and inspecting agency to make additional tests of concrete if test results indicate that slump, compressive strengths, or other requirements have not been met, as directed by Architect.

- a. Continuous coring of drilled piers may be required, at Contractor's expense, if temporary casings have not been withdrawn within specified time limits or if observations of placement operations indicate deficient concrete quality, presence of voids, segregation, or other possible defects.
- 11. Perform additional testing and inspecting, at Contractor's expense, to determine compliance of replaced or additional work with specified requirements.
- 12. Correct deficiencies in the Work that test reports and inspections indicate do not comply with the Contract Documents.
- E. An excavation, concrete, or a drilled pier will be considered defective if it does not pass tests and inspections.
- F. Prepare test and inspection reports for each drilled pier as follows:
 - 1. Actual top and bottom elevations.
 - 2. Actual drilled-pier diameter at top, bottom, and bell.
 - 3. Top of rock elevation.
 - 4. Description of soil materials.
 - 5. Description, location, and dimensions of obstructions.
 - 6. Final top centerline location and deviations from requirements.
 - 7. Variation of shaft from plumb.
 - 8. Shaft excavating method.
 - 9. Design and tested bearing capacity of bottom.
 - 10. Levelness of bottom and adequacy of cleanout.
 - 11. Properties of slurry and slurry test results at time of slurry placement and at time of concrete placement.
 - 12. Ground-water conditions and water-infiltration rate, depth, and pumping.
 - 13. Description, purpose, length, wall thickness, diameter, tip, and top and bottom elevations of temporary or permanent casings. Include anchorage and sealing methods used and condition and weather tightness of splices if any.
 - 14. Description of soil or water movement, sidewall stability, loss of ground, and means of control.
 - 15. Date and time of starting and completing excavation.
 - 16. Inspection report.
 - 17. Condition of reinforcing steel and splices.
 - 18. Position of reinforcing steel.
 - 19. Concrete placing method, including elevation of consolidation and delays.
 - 20. Elevation of concrete during removal of casings.
 - 21. Locations of construction joints.
 - 22. Concrete volume.
 - 23. Concrete testing results.
 - 24. Remarks, unusual conditions encountered, and deviations from requirements.

3.7 DISPOSAL OF SURPLUS AND WASTE MATERIALS

A. Disposal: Remove surplus satisfactory soil and waste material, including unsatisfactory soil, trash, and debris, and legally dispose of it off Owner's property.

END OF SECTION 316329

SECTION 320190 - OPERATIONS AND MAINTENANCE OF PLANTING

PART 1 - GENERAL

1.1 DESCRIPTION

A. These general requirements apply to all landscape operations. Refer to specification sections for specific general, product, and execution requirements.

1.2 QUALITY ASSURANCE

- A. Comply with all applicable local, state and federal requirements regarding materials, methods of work, and disposal of excess and waste materials.
- B. Obtain and pay for all required inspections, permits, and fees. Provide notices required by governmental authorities.
- C. Owner shall appoint a qualified representative to oversee the work and assure its adherence to the plans and these specifications. Henceforth, this person shall be designated as Owner's Representative.

1.3 PROJECT CONDITIONS

- A. Locate and identify existing underground and overhead services and utilities within contract limit work areas. Contact Miss Utility at 800.552.7001. Provide adequate means of protection of utilities and services designated to remain. Repair utilities damaged during site work operations at Contractor's expense.
- B. When uncharted or incorrectly charted underground piping or other utilities and services are encountered during site work operations, notify the applicable utility company immediately to obtain procedure directions. Cooperate with the applicable utility company in maintaining active services in operation.
- C. Locate, protect, and maintain benchmarks, monuments, control points and project engineering reference points. Re-establish disturbed or destroyed items at Contractor's expense.
- D. Obtain governing authorities written permission when required to close or obstruct street, walks and adjacent facilities. Provide alternate routes around closed or obstructed traffic ways when required by governing authorities.
- E. Control dust caused by the work. Dampen surfaces as required. Comply with pollution control regulations of governing authorities.
- F. Protect existing buildings, paving, and other services or facilities on site and adjacent to the site from damage caused by work operations. Cost of repair and restoration of damaged items at Contractor's expense.

G. Protect and maintain streetlights, utility poles and services, traffic signal control boxes, curb boxes, valves and other services, except items designated for removal. Remove or coordinate the removal of traffic signs, parking meters and postal mailboxes with the applicable governmental agency.

PART 2 - PRODUCTS

2.1 MATERIALS AND EQUIPMENT

A. Materials and equipment: As selected by Contractor, except as indicated.

PART 3 - EXECUTION

3.1 PREPARATION

- A. Examine the areas and conditions under which work is to be performed. Do not proceed with the work until unsatisfactory conditions are corrected.
- B. Consult the available records and drawings of adjacent work and of existing services and utilities which may affect work operations, as provided by Owner.

END OF SECTION 320190

SECTION 321216 - ASPHALT PAVING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 01 Specification Sections, apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Hot-mix asphalt patching.
- 2. Hot-mix asphalt paving.
- 3. Hot-mix asphalt paving overlay.
- 4. Pavement-marking paint.
- 5. Traffic-calming devices.

B. Related Sections:

1. Division 31 Section "Earth Moving" for aggregate subbase and base courses and for aggregate pavement shoulders.

1.3 DEFINITION

- A. Hot-Mix Asphalt Paving Terminology: Refer to ASTM D 8 for definitions of terms.
- B. Virginia Department of Transportation: VDOT.

1.4 SUBMITTALS

- A. Product Data: For each type of product indicated. Include technical data and tested physical and performance properties.
 - 1. Job-Mix Designs: Certification, by authorities having jurisdiction, of approval of each job mix proposed for the Work.
- B. Qualification Data: For qualified manufacturer.
- C. Material Certificates: For each paving material, from manufacturer.
- D. Material Test Reports: For each paving material.

1.5 QUALITY ASSURANCE

- A. Manufacturer Qualifications: A paving-mix manufacturer registered with and approved by VDOT.
- B. Installer Qualifications: Imprinted-asphalt manufacturer's authorized installer who is trained and approved for installation of imprinted asphalt required for this Project.
- C. Testing Agency Qualifications: Qualified according to the latest VDOT Road and Bridge Specifications for testing indicated.
- D. Regulatory Requirements: Comply with materials, workmanship, and other applicable requirements of VDOT for asphalt paving work.
 - 1. Measurement and payment provisions and safety program submittals included in standard specifications do not apply to this Section.

1.6 DELIVERY, STORAGE, AND HANDLING

- A. Deliver pavement-marking materials to Project site in original packages with seals unbroken and bearing manufacturer's labels containing brand name and type of material, date of manufacture, and directions for storage.
- B. Store pavement-marking materials in a clean, dry, protected location within temperature range required by manufacturer. Protect stored materials from direct sunlight.

1.7 PROJECT CONDITIONS

- A. Environmental Limitations: Do not apply asphalt materials if subgrade is wet or excessively damp, if rain is imminent or expected before time required for adequate cure, or if the following conditions are not met:
 - 1. Prime Coat: Minimum surface temperature of 60 degrees F.
 - 2. Tack Coat: Minimum surface temperature of 60 degrees F.
 - 3. Slurry Coat: Comply with weather limitations in ASTM D 3910.
 - 4. Asphalt Base Course: Minimum surface temperature of 40 degrees F and rising at time of placement.
 - 5. Asphalt Surface Course: Minimum surface temperature of 60 degrees F at time of placement.
- B. Pavement-Marking Paint: Proceed with pavement marking only on clean, dry surfaces and at a minimum ambient or surface temperature of 40 degrees F for oil-based materials, and not exceeding 95 degrees F.
- C. Imprinted Asphalt Paving: Proceed with coating imprinted pavement only when air temperature is at least 50 degrees F and rising and will not drop below 50 degrees F within 8 hours of coating application. Proceed only if no precipitation is expected within two hours after applying the final layer of coating.

PART 2 - PRODUCTS

2.1 AGGREGATES

- A. General: Use materials and gradations that have performed satisfactorily in previous installations.
- B. Aggregate Base: Shall be Type I, size 21A or 21B, graded aggregate base material, as defined in VDOT, Road and Bridge Specifications, Section 208, "Subbase and Aggregate Base Material."

2.2 ASPHALT MATERIALS

- A. Asphalt Binder: AASHTO M 320, AASHTO MP 1a, PG 64-22, or as recommended by local paving authorities to suit project conditions.
- B. Asphalt Cement: ASTM D 3381 for viscosity-graded material or as recommended by local paving authorities to suit project conditions.
- C. Prime Coat: Cut-back asphalt RC-250, meeting requirements of AASHTO M81.
- D. Prime Coat: Cover aggregate shall be VDOT No. 68 stone..
- E. Tack Coat: Emulsified asphalt CRS-1, meeting requirements of VDOT Section 210.
- F. Seal coat shall be cationic emulsion asphalt CRS-1 or CRS-2, meeting requirements of AASHTO M208 or cut-back asphalt RC-250, meeting requirements of AASHTO M81.
- G. Seal coat cover aggregate shall be VDOT No. 78 stone.
- H. Water: Potable.

2.3 AUXILIARY MATERIALS

- A. Pavement-Marking Paint: As defined in VDOT, Road and Bridge Specifications, Section 231, "Paint." Wheel Stops: Precast, air-entrained concrete, 2500-psi minimum compressive strength, 4-1/2 inches high by 9 inches wide by 72 inches long. Provide chamfered corners, drainage slots on underside, and holes for anchoring to substrate.
 - 1. Dowels: Galvanized steel, 3/4-inch diameter, 10-inch minimum length.

PART 3 - EXECUTION

3.1 EXAMINATION

A. Verify that subgrade is dry and in suitable condition to begin paving.

- B. Subgrade preparation: Subgrade preparation shall consist of the final machining of the subgrade immediately prior to placing the aggregate base course. The surface shall be true to line and grade. Construction methods and equipment shall conform to applicable portions of Section 305 "Subgrade and Shoulders," of VDOT Road and Bridge specifications.
- C. Aggregate base course construction methods and equipment shall conform to requirements of Section 309, "Aggregate Base Course," of VDOT Road and Bridge specifications.

3.2 PATCHING

- A. Hot-Mix Asphalt Pavement: Saw cut perimeter of patch and excavate existing pavement section to sound base. Excavate rectangular or trapezoidal patches, extending 12 inches into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Remove excavated material. Recompact existing unbound-aggregate base course to form new subgrade.
- B. Portland Cement Concrete Pavement: Break cracked slabs and roll as required to reseat concrete pieces firmly.
 - 1. Pump hot undersealing asphalt under rocking slab until slab is stabilized or, if necessary, crack slab into pieces and roll to reseat pieces firmly.
 - 2. Remove disintegrated or badly cracked pavement. Excavate rectangular or trapezoidal patches, extending into adjacent sound pavement, unless otherwise indicated. Cut excavation faces vertically. Recompact existing unbound-aggregate base course to form new subgrade.
- C. Tack Coat: Apply uniformly to vertical surfaces abutting or projecting into new, hot-mix asphalt paving at a rate of 0.05 to 0.15 gal./SY.
 - 1. Allow tack coat to cure undisturbed before applying hot-mix asphalt paving.
 - 2. Avoid smearing or staining adjoining surfaces, appurtenances, and surroundings. Remove spillages and clean affected surfaces.
- D. Patching: Fill excavated pavements with hot-mix asphalt base mix for full thickness of patch and, while still hot, compact flush with adjacent surface.

3.3 REPAIRS

- A. Leveling Course: Install and compact leveling course consisting of hot-mix asphalt surface course to level sags and fill depressions deeper than 1 inch in existing pavements.
 - 1. Install leveling wedges in compacted lifts not exceeding 3 inches thick.
- B. Crack and Joint Filling: Remove existing joint filler material from cracks or joints to a depth of 1/4 inch.
 - 1. Clean cracks and joints in existing hot-mix asphalt pavement.
 - 2. Use emulsified-asphalt slurry to seal cracks and joints less than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

3. Use hot-applied joint sealant to seal cracks and joints more than 1/4 inch wide. Fill flush with surface of existing pavement and remove excess.

3.4 SURFACE PREPARATION

- A. General: Immediately before placing asphalt materials, remove loose and deleterious material from substrate surfaces. Ensure that prepared subgrade is ready to receive paving.
- B. Prime Coat: Apply prime coat at rate of 0.20 to 0.50 gallon per square yard over compacted aggregate base in accordance with VDOT Road and Bridge specifications, section 311, "Prime Coat."
- C. Tack Coat: Apply tack coat to contact surfaces of previously constructed asphalt or hydraulic cement concrete and surfaces abutting or projecting into asphalt concrete pavement. Apply at rate of 0.05 to 0.15 gallon per square yard of surface in accordance with VDOT Road and Bridge specifications, Section 310, "Tack Coat."

3.5 PAVING GEOTEXTILE INSTALLATION

- A. Apply tack coat uniformly to existing pavement surfaces at a rate of 0.20 to 0.30 gal./SY.
- B. Place paving geotextile promptly according to manufacturer's written instructions. Broom or roll geotextile smooth and free of wrinkles and folds. Overlap longitudinal joints 4 inches and transverse joints 6 inches.
 - 1. Protect paving geotextile from traffic and other damage and place hot-mix asphalt paving overlay the same day.

3.6 HOT-MIX ASPHALT PLACING

- A. Asphalt concrete base course shall be VDOT BM-25.0 meeting requirements of VDOT Road and Bridge specifications, Section 211.
- B. Asphalt concrete surface course shall be VDOT SM-9.5A meeting requirements of VDOT Road and Bridge specifications, Section 211.

3.7 COMPACTION

- A. General: Begin compaction as soon as placed hot-mix paving will bear roller weight without excessive displacement. Compact hot-mix paving with hot, hand tampers or with vibratory-plate compactors in areas inaccessible to rollers.
 - 1. Complete compaction before mix temperature cools to 185 degrees F.
- B. Breakdown Rolling: Complete breakdown or initial rolling immediately after rolling joints and outside edge. Examine surface immediately after breakdown rolling for indicated crown, grade, and smoothness. Correct laydown and rolling operations to comply with requirements.

- C. Intermediate Rolling: Begin intermediate rolling immediately after breakdown rolling while hot-mix asphalt is still hot enough to achieve specified density. Continue rolling until hot-mix asphalt course has been uniformly compacted to the following density:
 - 1. Average Density: 96 percent of reference laboratory density according to ASTM D 6927 or AASHTO T 245, but not less than 94 percent nor greater than 100 percent.
 - 2. Average Density: 92 percent of reference maximum theoretical density according to ASTM D 2041, but not less than 90 percent nor greater than 96 percent.
- D. Finish Rolling: Finish roll paved surfaces to remove roller marks while hot-mix asphalt is still warm.
- E. Edge Shaping: While surface is being compacted and finished, trim edges of pavement to proper alignment. Bevel edges while asphalt is still hot; compact thoroughly.
- F. Repairs: Remove paved areas that are defective or contaminated with foreign materials and replace with fresh, hot-mix asphalt. Compact by rolling to specified density and surface smoothness.
- G. Protection: After final rolling, do not permit vehicular traffic on pavement until it has cooled and hardened.
- H. Erect barricades to protect paving from traffic until mixture has cooled enough not to become marked.

3.8 INSTALLATION TOLERANCES

- A. Pavement Thickness: Compact each course to produce the thickness indicated within the following tolerances:
 - 1. Base Course: Plus or minus 1/2 inch.
 - 2. Surface Course: Plus 1/4 inch, no minus.
- B. Pavement Surface Smoothness: Compact each course to produce a surface smoothness within the following tolerances as determined by using a 10-foot straightedge applied transversely or longitudinally to paved areas:
 - 1. Base Course: 1/4 inch.
 - 2. Surface Course: 1/8 inch.
 - 3. Crowned Surfaces: Test with crowned template centered and at right angle to crown. Maximum allowable variance from template is 1/4 inch.
- C. Asphalt surface treatment construction methods shall conform to Section 313, "Asphalt Surface treatment," of VDOT Road and Bridge specifications.
 - 1. Apply prime coat at the rate of 0.35 gallon per square yard. Apply prime coat cover aggregate at the rate of 30 pounds per square yard.
 - 2. Apply seal coat at the rate of 0.35 gallon per square yard. Apply seal coat cover aggregate at a rate of 30 pounds per square yard.

3.9 PAVEMENT MARKING

- A. Allow paving to age for 30 days before starting pavement marking.
- B. Sweep and clean surface to eliminate loose material and dust.
- C. Apply paint with mechanical equipment to produce pavement markings, of dimensions indicated, with uniform, straight edges. Apply at manufacturer's recommended rates to provide a minimum wet film thickness of 15 mils.

3.10 WHEEL STOPS

- A. Install wheel stops in bed of adhesive as recommended by manufacturer.
- B. Securely attach wheel stops to pavement with not less than two galvanized-steel dowels embedded at one-quarter to one-third points. Securely install dowels into pavement and bond to wheel stop. Recess head of dowel beneath top of wheel stop.

3.11 FIELD QUALITY CONTROL

A. Testing Agency: Owner will engage a qualified testing agency to perform tests and inspections.

3.12 DISPOSAL

- A. Except for material indicated to be recycled, remove excavated materials from Project site and legally dispose of them.
 - 1. Do not allow milled materials to accumulate on-site.

END OF SECTION 321216

SECTION 329000 - BURMUDAGRASS LAWN PLANTING

PART 1 - GENERAL

1.1 DESCRIPTION AND REQUIREMENTS

- A. Drawings and general provisions of the Contract, including General and Supplementary Conditions apply to this Section.
- B. This work consists of furnishing and installing all planting materials required for landscaping hereinafter specified in locations as shown. The landscape contractor shall be required to visit the site prior to submitting Bid Proposal to become familiar with all conditions affecting the proposed work. The contractor shall identify and review all underground utility locations prior to commencing work and shall exercise caution when working close to utilities and shall notify the Owner's Designated Representative of apparent conflicts with construction and utilities so that adjustment can be planned prior to installation.

1.2 EQUIPMENT

A. Maintain all equipment, tools and machinery while on the project in sufficient quantities and capacity for proper execution of the work.

1.3 RELATED WORK

- A. Section 31 20 00, EARTH MOVING, Stripping Topsoil and Stock Piling.
- B. Section 31 10 00, SITE CLEARING.

1.4 SUBMITTALS

A. Samples: Submit the following samples for approval before work is started:

	All pesticides required	EPA approved labeling and MSDS sheet
	such as preemergence or	for
	post emergence	each such product selected for use.
	herbicides, insecticides,	_
	or	

B. Certificates of Conformance or Compliance: Before delivery, notarized certificates attesting that the following materials meet the requirements specified shall be submitted to the Owner's Designated Representative for approval:

- 1. Fertilizers.
- 2. Lime.
- 3. Seed.
- C. Manufacturer's Literature and Data:
 - 1. Erosion control materials.
 - 2. Pre-emergent herbicide.
- D. Soil laboratory testing results and any soil amendment recommendations from the Contractor. Submit soil test results for native on-site topsoil, organic topsoil amendment, and amended topsoil (in-place) as required.
 - 1. Organic Topsoil Amendment and Imported Topsoil: The Contractor shall provide a 5 pound representative sample from each proposed source for testing, analysis, and approval. Contractor shall deliver samples to testing laboratories and shall have the testing report sent directly to the Owner's Designated Representative. Testing reports shall include the following tests and recommendations.
 - a. Mechanical gradation (sieve analysis) and chemical (pH soluble salts) shall be performed by public extension service agency or a certified private testing laboratory in accordance with the current standards of the Association of Official Agricultural Chemists. A hydrometer shall be used to determine percent of clay and silt.
 - b. Percent of organics shall be determined by the loss on ignition of oven-dried samples. Test samples shall be oven-dried to a constant weight at a temperature of 110 °C, plus or minus 5°C.
 - c. Chemical analysis shall be undertaken for Nitrate Nitrogen, Ammonium Nitrogen, Phosphorus, Potassium, Calcium, Aluminum, Soluble Salts, and acidity (pH).
 - d. Tests, as specified, for gradation, organics, soil chemistry and pH shall be performed by a testing laboratory retained by the Contractor.
 - e. Soil analysis tests shall show recommendations for soil additives to correct soils deficiencies as necessary, and for fertilizing and liming applications to support successful turfgrass growth.
 - f. All tests shall be performed in accordance with the current standards of the Association of Official Agricultural Chemists.
 - 2. In-Place Topsoil Testing: In place topsoil shall be tested following the incorporation of amendments and additives. The Contractor shall provide a minimum of six (6)samples per forty thousand (40,0000) square feet, six inch (6") depth by three inch (3") diameter core samples of amended soil taken from the site for testing, analysis, and approval. The location of each sample shall be as directed by the Owner's Designated Representative from areas designated to receive turfgrass or be established to turfgrass on the Contract Drawings. No seeding operations shall occur until acceptance of the amended soil samples has been obtained. Contractor shall deliver samples to testing laboratories and shall have the testing report sent directly to the Owner's Designated Representative. Tests shall
 - 3. Seed: Submit a manufacturer's Certificate of Compliance to the Specifications with each shipment of each type of seed. These certificates shall include the guaranteed percentages of purity, weed content and germination of the seed, and also the net weight and date of shipment. No seed may be sown until the Contractor has submitted the certificates.

be as directed in paragraph 1.4 D of this Section. All testing shall be at the Contractor's cost.

4. Fertilizer: Submit four (4) certificates of analysis for each type of fertilizer.

1.5 DELIVERY AND STORAGE

A. Delivery:

Deliver fertilizer and lime to the site in the original, unopened containers bearing the manufacturer's
warranted chemical analysis, name, trade name or trademark, and in conformance to state and
federal law. In lieu of containers, fertilizer and lime may be furnished in bulk and a certificate
indicating the above information shall accompany each delivery.

B. Storage:

1. Keep seed, lime, and fertilizer in dry storage away from contaminants.

1.6 PLANTING AND TURFGRASS INSTALLATION SEASONS AND CONDITIONS

- A. Perform landscape planting and turfgrass installation operations within the following dates, but not before irrigation system installed, tested, and approved.
 - 1. Spring Planting: April 16th to May 1st. Earlier planting may be allowed with the use of approved growth mats.
- B. No work shall be done when the ground is frozen, snow covered, too wet or in an otherwise unsuitable condition for planting. Special conditions may exist that warrants a variance in the specified planting dates or conditions. Submit a written request to the Owner's Designated Representative stating the special conditions and proposal variance for approval.

1.7 TURF ESTABLISHMENT PERIOD

- A. The Establishment Period for turfgrass shall begin immediately after installation, with the approval of the Owner's Designated Representative, and continue for a period of time during the growing season sufficiently long (minimum of 3 months) for the turfgrass materials to achieve an establishment condition and appearance satisfactory to the Owner's Designated Representative. These conditions and appearance are described as follows: turfgrass shall have obtained a minimum of 98% surface cover that is generally weed-free, actively growing and healthy. The contractor shall be responsible for the health and maintenance of turfgrass during the establishment period. Turfgrass will not be accepted until after completion of an acceptable establishment period. During the turfgrass establishment period the Contractor shall:
 - 1. Water all turfgrass to maintain a moist soil surface at all times until the turfgrass is well established. An adequate supply of moisture must also be maintained within the root zone. Apply water at a moderate rate so as not to displace the mulch, create any water ponding or runoff from the soil supporting the turfgrass. See paragraph 1.8 for detailed water requirements and Contractor responsibilities.
 - 2. Provide the following during turfgrass establishment:
 - a. Eradicate all weeds. Water, fertilize, overseed, and perform any other operation necessary to promote the growth of turfgrass.
 - b. Mow the turfgrasses as often as necessary to maintain the NCA specified mowing height prior to final acceptance. Begin mowing when turfgrass is 100 mm (4 inches) high. Final mowing height is 65 mm (3.0 inch) for cool season turfgrasses. Mow as often as necessary to maintain the proper height while never removing more than 1/3 of the total height of grass leaves in a

single mowing. Mow any portion of the newly developing turfgrass stand that requires mowing without waiting for other areas of slowly developing seedlings to catch-up.

- 3. Replant any areas void of turfgrass during an active growing season only.
 - a. Seeding shall be evaluated for species and health thirty (30) days after final planting and reevaluated each 15 days during the establishment period. A satisfactory stand of grass plants from the seeding operation shall be 98% coverage uniform in color and leaf texture. Bare spots shall be a maximum of one-half (0.5) square foot. Unsatisfactory areas shall be reseeded within seven (7) days during an active growing season.
- 4. Complete remedial measures directed by the Owner's Designated Representative to ensure turfgrass survival.
- 5. Repair damage caused while making turfgrass replacements.

1.8 TURF WATERING REQUIREMENTS BY CONTRACTOR

- A. The Contractor's attention is directed to the following turf watering requirements:
 - 1. All turf areas shall be maintained by the Contractor in a continuous moist condition, satisfactory for good germination and growth of turf, as specified in the Contract Documents, until final project acceptance.
 - 2. The Contractor shall coordinate turf installation to coincide with activation of in-ground irrigation service.
 - 4. Turf areas shall be kept uniformly moist to a depth of 3-inches and shall receive water at a minimum rate of 1-inch per week between natural rain and supplemental watering.
 - 5. All turf injured or damaged due to the lack of water or the use of too much water shall be the contractor's responsibility to correct.

1.9 TUREGRASS ACCEPTANCE

- A. Turfgrass acceptance will occur after completion of the turfgrass establishment period. The Contractor shall have completed, located, and installed all turfgrass according to the plans and specifications. All turfgrass is expected to be living and in a healthy condition at the time of inspection and acceptance. The Contractor shall make a written request two weeks prior to final inspection of the turfgrass. Upon inspection when work is found to not meet the specifications, the turfgrass establishment period shall be extended at no additional cost to the City until work has been satisfactorily completed, inspected and accepted.
- B. Criteria for acceptance of turfgrass shall be as follows:
 - 1. A satisfactory stand of turfgrass plants from the seeding operation shall be 98% coverage uniform in color and leaf texture. Bare spots shall be a maximum of one-half (0.5) square foot.

1.10 TURFGRASS WARRANTY

- A. All work shall be in accordance with the terms of the GENERAL CONDITIONS, including the following supplements:
 - 1. A One Year Plant and Turfgrass Warranty will begin on the date that the City accepts the turfgrass but not before the end of the Turfgrass Establishment Period.

- 2. The Contractor will replace any areas void of turfgrass immediately during the warranty period and during an active growing season. A one year warranty for the turfgrass that are replaced will begin on the day the replacement work is completed and accepted.
- 3. The City will reinspect all replacement turfgrass at the end of the One Year Warranty. The Contractor will replace any dead, missing, or defective turfgrass immediately and during an active growing season. The Warranty will end on the date of this inspection provided the Contractor has complied with the work required by this specification.

PART 2 - PRODUCTS 2.1 GENERAL

A. All turfgrass material will conform to the varieties specified.

2.2 ORGANIC SOIL AMENDMENT

- A. All areas to receive turfgrass seeding may require an organic soil amendment to increase organic content and water retention as well as enhance turfgrass growth. If native topsoil has an organic matter content below 4% it should be amended to effectively create a satisfactory topsoil composition.
- B. Organic soil amendment will be spread and incorporated into the finished subgrade at the depths indicated on the Contract Drawings in order to raise the organic content of the soil to a minimum of four percent (4%) and a maximum of six percent (6%). Contractor will allow for additional depth of the organic soil amendment to bring all grades to the required finished grades as per the grading plans.
 - 1. Organic Soil Amendment shall be dark brown or black in color and capable of enhancing plant growth. Ninety-eight percent (98%) of the material should pass a one inch (1") screen. There shall be no admixture of refuse (i.e. noticeable inert contamination) or other materials toxic to plant growth.
 - 2. Acceptable types of Organic Soil Amendments include peat moss, humus or peat, well rotted manure, various mature composts, and commercially available combinations thereof. Acceptable compost may be derived from natural organic sources such as food or animal residuals, yard trimmings, or biosolids. Organic Soil Amendment shall be free of all woody fibers, seeds, and leaf structures, plastic and other petroleum products, and free of toxic and non-organic matter. Unacceptable sole sources of organic matter include untreated sludge from wastewater treatment plants, fresh manure, sawdust, and immature composts.
 - 3. Organic Soil Amendment shall conform to the following minimum material requirements:

Test Parameter Acceptable Ranges 27% to 80% Organic Matter pН 5.5-8.5 Ash 20-65% Nitrogen 0.4% - 3.5% Phosphorus 0.2%-1.5% Potassium 0.4%-1.5% C:N Ratio 25-30:1

CEC 50-150 meg/100 g

Heavy Metals Less than max. limits established by EPA 503

Inert Contents < 1% by weight Water-Holding Capacity 150-200%

Pathogen/Weed Seed Destruction Proof of EPA minimum Heating requirements

4. Organic content to be determined by the loss of ignition of oven-dried samples. Test samples shall be oven-dried to a constant weight at a temperature of 110 °C, plus or minus 5°C.

- 5. Any topsoil stripped and stockpiled on the site may be used provided that, after testing and addition of necessary additives, it meets the above specification. The Contractor shall provide additional Organic Soil Amendment as required to complete the required work.
- 6. All Organic Soil Amendment proposed for use shall be tested for conformance to the specifications and results provided to the Owner's Designated Representative.

2.5 TOPSOIL

- A. Topsoil shall be a well-graded soil of good uniform quality. It shall be a natural, friable soil representative of productive soils in the vicinity. Topsoil shall be free of admixture of subsoil, foreign matter, objects larger than 25 mm (one inch) in any dimension, toxic substances, weeds and any material or substances that may be harmful to plant growth and shall have a pH value of not less than 6.0 nor more than 7.0, shall have an organic content of a minimum of four percent (4%) and a maximum of six percent (6%), and should be best suited to the region, climate and plant material specific to the project.
- B. If sufficient topsoil is not available on the site, the Contractor shall furnish additional topsoil at the Contractor's cost. At least 10 days prior to topsoil delivery, notify the Owner's Designated Representative of the source(s) from which topsoil is to be furnished. Obtain topsoil from well drained areas. Additional topsoil shall meet the requirements as stated above with testing required per paragraph 1.4 D
- C. The following topsoil gradation shall apply:

Sieve	% Passing by Weight
1 inch	100
1/4 inch	85-100
No. 40 mesh	10-50
No. 200 mesh	0-20

2.6 LIME

A. Lime shall be agricultural limestone containing not less than 90 percent calcium and magnesium carbonates. Lime must be ground to such fineness that not less than 90% must pass No. 8 mesh and not less than 25% must pass No. 100 mesh. Moisture is not to exceed 10%.

2.7 SOIL CONDITIONERS

- A. Peat shall be a natural product of sphagnum moss peat, peat moss, hypnum moss, peat reed-sedge peat, or peat humus derived from a fresh-water site conforming to Fed. Spec. Q-P-166, except as otherwise specified. Peat shall be shredded and granulated to pass through a 13 mm (1/2 inch) mesh screen and conditioned in storage piles for at least six months after excavation.
- B. Coarse Sand: Coarse concrete sand, ASTM C-33 Fine Aggregate, shall be clean, sharp, and free of limestone, shale and slate particles and of toxic materials.
- C. Perlite shall conform to ASTM C549.
- D. Vermiculite shall be horticultural grade and free of any toxic materials and conform to ASTM C516.
- E. Pine Bark shall be horticultural-grade milled pine bark, with 80 percent of the material by volume sized between 0.1 and 15.0 mm. (.004in. and .59in.).
 - 1. Pine bark shall be aged sufficiently to break down all woody material. Pine bark shall be screened
 - 2. pH shall range between 4.0 and 7.0.
 - 3. Submit manufacturer's literature for approval.

F. Organic Matter shall be commercially prepared compost, composted sufficiently to be free of all woody fibers, seeds, and leaf structures, and free of toxic and nonorganic matter.

2.8 TURFGRASS FERTILIZER

A. Provide turfgrass fertilizer that is commercial grade, free flowing, uniform in composition, and conforms to applicable state and federal regulations. Granular fertilizer shall bear the manufacturer's warranted statement of analysis. Granular fertilizer shall contain a minimum percentage by weight of 20% nitrogen (of which 50 percent shall be from a controlled release source such as sulfur coated urea), 5% available phosphoric acid, and 15% potash. Liquid starter fertilizer for use in the hydro mulch slurry will be commercial type with 50 percent of the nitrogen from a controlled release source.

2.9 SEED

- A. Seed shall be state-certified seed of the latest season's crop and shall be delivered in original sealed packages bearing the producer's warranted analysis for percentages of mixtures, purity, germination, weed seed content, and inert material. Seed shall be labeled in conformance with U. S. Department of Agriculture rules and regulations under the Federal Seed Act and applicable state seed laws. Seed that has become wet, moldy, or otherwise damaged will not be acceptable. Onsite seed mixing shall be done only in the presence of the Owner's Designated Representative. All turfgrass seeding operations shall be done separately and prior to the application of any mulch material.
- B. Minimum Acceptable Seed Quality standards for all turfgrass seed utilized are as follows: Purity 95%, Germination 85%, Weed Seed Content less than 0.5%, Noxious Weeds 0.0%, Inert Material less than 3%, Germination Test Date no older than 6 months.
- C. All <u>turfgrass seed mixtures</u>, or sod composition shall conform to the species and cultivar requirements detailed herein. Turfgrass seed mix shall be 'Landscaper's Choice Turf Grass Mixture', as provided by Evergreen Seed Company, LLC, or approved equal. Turfgrass seed mix shall be comprised of the following:

MIXTURE = 75% Yukon Bermuda

25% Numex Sahara Bermuda

SEEDING RATE = 3 lb/1000 sq.ft.

2.10 HERBICIDES AND OTHER PESTICIDES

A. All herbicides and other pesticides shall be properly labeled and registered with the U.S. Environmental Protection Agency. Keep all pesticides in the original labeled containers indicating the analysis and method of use.

PART 3 – EXECUTION

3.1 FINE GRADING AND ORGANIC SOIL AMENDMENT INCORPORATION

- A. Contractor shall obtain Owner's Designated Representative's written approval of previously completed rough grading work prior to commencing organic soil amendment incorporation work.
- B. Immediately prior to dumping and spreading the approved organic soil amendment, the subgrade shall be cleaned of all stones greater than two inches (2") and all debris or rubbish. Such material shall be removed from the site. Prior to spreading of the organic soil amendment, subgrades which are too compact to drain water and too compact based upon compaction tests shall be ripped with a claw one foot (1') deep, pulled by a bulldozer two feet (2') on center, both directions. Contractor shall then regrade surface.

- C. Organic soil amendment material shall be placed and uniformly spread over approved finish sub-grades to a depth sufficiently greater than the specified depth so that after natural settlement and light rolling, the specified minimum compacted depth will have been provided and the completed work will conform to the lines, grades and elevations indicated. Incorporate organic soil amendment by disc harrowing, rototilling or other means in a uniform manner. The depth of incorporation shall be based upon the organic content of the tested and approved organic soil amendment, so as to produce a finished soil with an organic matter content of between four (4) and six percent (6%). Supply additional organic soil amendment material, after in-place testing and approval (see paragraph 1.4. E.1d), as may be needed to give the required organic matter content and finished grades under the Contract without additional cost to the Owner.
- D. Disturbed areas outside the limit of work shall be spread with four inch (4") minimum depth of organic soil amendment material to the finished grade.
- E. No subsoil or organic soil amendment material shall be handled in any way if it is in a wet or frozen condition.
- F. Sufficient grade stakes shall be set for checking the finished grades. Stakes must be set in the bottom of swales and at the top of slopes. Connect contours and spot elevations with an even slope.
- G. After organic soil amendment material has been incorporated into the subsoil, it shall be carefully prepared by scarifying or harrowing and hand raking. Remove all large stiff clods, lumps, brush, roots, stumps, litter and other foreign matter. Remove all stones over one inch (1") diameter from the amended soil bed. The amended soil shall also be free of smaller stones in excessive quantities as determined by the Owner's Designated Representative.

3.2 EXCAVATION FOR TURF GRASS

- A. The whole surface shall then be compacted with a roller or other suitable means to achieve a maximum dry density of 88 to 90 percent in accordance with compaction standards of ASTM D1557 Method D. During the compaction process, all depressions caused by settlement or rolling shall be filled with additional organic soil amendment and the surface shall be regraded and rolled until presenting a smooth and even finish corresponding to the required grades. The acceptable condition of the finished soil grade for all areas that are to be established to turfgrass is best described as "fine textured and firm". The test for satisfactory firmness requires that the surface soil not be fluffy or powdery and will support the weight of an average adult person without creating a visible depression.
- B. Where existing soil is to be used in place, till new ground cover to a depth of 100 mm (4 inches). Spread peat soil amendment uniformly over the bed to depth of 50 mm (2 inches) and thoroughly incorporate it into the existing soil to a depth of 100 mm (4 inches) using a roto-tiller or similar type of equipment to obtain a uniform and well pulverized soil mix. Where existing soil is compacted (former roadways, parking lots, etc.) till the soil down to a depth necessary to support the growth of new planting. During tillage operations, remove all sticks, stones, roots, and other objectionable materials. Bring grade to a smooth and even surface conforming to established grades.
- C. In areas of new grading where existing soil is being replaced for the construction of new ground cover, remove 100 mm (4 inches) of existing soil and replace with topsoil.

3.3 TILLAGE FOR TUREGRASS AREAS

A. Thoroughly till the soil to a depth of at least 150 mm (6 inches) by scarifying, disking, harrowing, or other approved methods. This is particularly important in areas where heavy equipment has been used. Remove all

debris and stones larger than 25 mm (one inch) remaining on the surface after tillage in preparation for finish grading. To minimize erosion, do not till areas of 3:1 slope ratio or greater. Scarify these areas to a 50 mm (one inch) depth and remove debris and stones.

3.4 FINISH GRADING

A. After tilling the soil for bonding of topsoil with the subsoil, spread the topsoil evenly to a minimum depth of 6 inches. Incorporate topsoil at least 50 to 75 mm (2 to 3 inches) into the subsoil to avoid soil layering. Do not spread topsoil when frozen or excessively wet or dry. Correct irregularities in finished surfaces to eliminate depressions. Protect finished topsoil areas from damage by vehicular or pedestrian traffic. Complete lawn work only after areas are brought to finished grade.

3.5 APPLICATION OF FERTILIZER AND LIME FOR TURFGRASS AREAS

- A. Apply turfgrass fertilizer at a rate that will deliver 1 pound of nitrogen per 1000 sq.ft. In addition, adjust soil acidity as recommended by soil test results and add any soil conditioners as specified herein for suitable topsoil under PART 2, Paragraph 2.2 A and B, and 2.5 TOPSOIL.
- B. Spread lime as recommended by the soil test results.
- C. Incorporate lime into the soil to a depth of at least 100 mm (4 inches) as part of the finish grading operation. Starter fertilizer should be lightly mixed with the top 1/2 inch of soil. Immediately restore the soil to an even condition before any seeding or sod placement.

3.6 MECHANICAL SEEDING

- A. Broadcast seed by approved application equipment at the rate as outlined in section 2.20C in this spec above. All turfgrass seed shall be planted prior to the application of any mulch material. The seed shall be uniformly distributed in a minimum of 2 directions at right angles to each other. Drag the seeded area to inter-mingle the seed and surface soil by means of spike-tooth harrow, cultipacker, or other approved device.
- B. Immediately after dragging, firm the entire area with a roller not exceeding 225 kg/m (150 pounds per foot) of roller width.
- C. Immediately after preparing the seeded area, evenly spread an organic mulch of straw by hand or by approved mechanical blowers at the rate of 0.5 kg/m2 (2 tons per acre). Application shall allow some sunlight to penetrate and air to circulate but also reduce soil and seed erosion and conserve soil moisture. Anchor mulch by a mulch tiller, asphalt emulsion, twine, or netting. When asphalt emulsion is used, apply either simultaneously or in a separate application. Take precautionary measures to prevent asphalt materials from marking or defacing structures, pavements, utilities, or plantings.

3.7 WATERING

A. Apply water to the turfgrass areas immediately following installation at a rate sufficient to ensure thorough wetting of the soil to a depth of at least 50 mm (2 inches). Supervise watering operation to prevent run-off. Repair all areas damaged by water operations. Keep soil surface constantly moist, not wet, until turfgrass plants are well established.

3.8 PROTECTION OF TURFGRASS AREAS

A. Immediately after installation of the turfgrass areas, protect against traffic or other use by erecting barricades, as necessary, and placing approved signs at appropriate intervals until final acceptance.

3.9 RESTORATION AND CLEAN-UP

A. Where existing or new turfgrass areas have been damaged or scarred during construction operations, restore disturbed area to their original condition. In areas where turfgrass work have been completed,

PLANTING 32 90 00 - 9

clear the area of all debris, spoil piles, and containers. Clear all other paved areas when work in adjacent areas are completed. Remove all debris, rubbish and excess material from the station.

END OF SECTION 32 90 00

PLANTING 32 90 00 - 10

SECTION 329219 - SEEDING

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide seeded lawns as shown and specified. The work includes:
 - 1. Soil preparation.
 - 2. Seeding lawns, and other indicated areas.
 - 3. Mulching.
 - 4. Reconditioning existing lawns.

B. Related work:

- 1. Division 31: Earth Moving.
- 2. Section 329300: Plants.

1.2 QUALITY ASSURANCE

A. Comply with all Virginia State Certification seed standards.

1.3 DELIVERY, STORAGE, AND HANDLING

A. Deliver seed and fertilizer materials in original unopened containers showing weight, analysis, and name of manufacturer. Store in a manner to prevent wetting and deterioration.

1.4 PROJECT CONDITIONS

- A. Work notification: Notify Owner's Representative at least five (5) working days prior to start of seeding operations.
- B. Protect existing utilities, paving, and other facilities from damage caused by seeding operations.
- C. Perform seeding work only after planting and other work affecting ground surface has been completed.
- D. Provide hose and lawn watering equipment as required. Owner to provide water on site.

1.5 WARRANTY

A. The Contractor warranties all seeded areas to be installed according to specifications, until accepted by Owner's Representative.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Lawn seed: Recommendation of seed mix from local extension service for that area. Fresh, clean, and new crop seed mixture.
- B. Seed type: As recommended from local extension service. A Tall Turf-Type fescue should be used. Seed mix should be 80% to 100% germination.

C. Fertilizer:

- 1. Granular, non-burning product composed of not less than 50% organic, slow acting, guaranteed analysis professional fertilizer.
- 2. Starter fertilizer containing 10% nitrogen, 10% phosphoric acid, and 10% potash by weight, or similar approved composition.
- D. Ground limestone: Containing not less than 85% of total carbonates and ground to such fineness that 50% will pass through a 100 mesh sieve and 90% will pass through a 20 mesh sieve.

E. Mulch

- 1. Straw: Clean oat or wheat straw well seasoned before baling, free from mature seed-bearing stalks or roots of prohibited or noxious weeds. Should be free of rot and mildew.
- 2. Cellion fiber mulch or equal.
- F. Water: Free of substance harmful to seed growth. Hoses or other methods of transportation furnished by Contractor. Water provided by Owner on site.

PART 3 - EXECUTION

3.1 INSPECTION

A. Examine finish surfaces, grades, topsoil quality, and depth. Do not start seeding work until unsatisfactory conditions are corrected.

3.2 PREPARATION

- A. Limit preparation to areas, which will be immediately seeded.
- B. Loosen topsoil of lawn areas to minimum depth of 3 inches, if compacted. Remove stones over 1 inch in any dimension, sticks, roots, rubbish, and extraneous matter.
- C. Apply limestone at a rate to adjust pH of topsoil to not less than 5.5 nor more than 6.8. Distributed evenly by machine and incorporate thoroughly into topsoil.

- D. Apply fertilizer to indicated turf areas at a rate equal to 1.0 lb. of actual nitrogen per 1,000 sq. ft. (220 lbs./acre).
- E. Grade lawn areas to a smooth, free-draining, even surface with a loose, moderately coarse texture.
- F. Restore prepared areas to specified condition if eroded, settled, or otherwise disturbed after fine grading and prior to seeding.

3.3 INSTALLATION

A. Seeding:

- 1. Seed immediately after preparation of bed. Spring seeding between March 1 and June 15 and fall seeding between August 15 and November 1, or at such other times acceptable to the Owner's Representative.
- 2. Seed indicated areas within contract limits.
- 3. Apply seed with a rotary or drop type distributor. Install seed evenly by sowing equal quantities in two (2) directions, at right angles to each other.
- 4. Sow grass seed at a rate recommended by type of seed used.
- 5. Incorporate seed into top 1/8 inch of soil and roll.

B. Mulching:

- 1. Place straw or fiber mulch on seeded areas within 24 hours after seeding.
 - a. Place straw mulch uniformly in continuous blanket at the rate of 2-1/2 tons per acre, or 2 bales per 1,000 sq. ft. of area. A mechanical blower may be used for straw mulch application when acceptable to the Owner's Representative.
 - b. A cellulose fiber or approved equal may be used in aqueous mixture at the rate of 1,500 lbs./acre.
- 2. Secure straw to soil by approved methods.

3.4 RECONDITIONING EXISTING LAWNS

- A. Analyze the condition of existing turf areas to remain, and determine the extent of necessary reconditioning. Provide unit cost and estimate of work. Obtain Owner's approval prior to commencement of work.
- B. Recondition existing lawn areas damaged by Contractor's operations, including storage of materials or equipment and movement of construction vehicles, and existing lawn areas as indicated.
- C. Provide fertilizer, seed and soil amendments as specified for new lawns and as required to provide a satisfactorily reconditioned lawn. Provide topsoil as required to fill low areas and meet new finished grades.

- D. Cultivate bare and compacted areas thoroughly.
- E. Remove diseased or unsatisfactory lawn areas. Do not bury into soil. Remove topsoil containing foreign materials resulting from Contractor's operations, including oil drippings, stone, gravel, and other construction materials.
- F. Where substantial but thin lawn remains, rake, aerate if compacted, or cultivate soil; fertilize and seed.

3.5 MAINTENANCE

A. Maintenance of installed and accepted seeded lawns will be performed by the Owner.

3.6 ACCEPTANCE

- A. Seeded areas will be inspected at completion of installation and accepted subject to compliance with specified materials and installation requirements.
- B. Sections of the work may be accepted when complete upon agreement of the Owner's Representative and the Contractor.
- C. Upon acceptance, the Owner will assume lawn maintenance.

3.7 CLEANING

A. Perform cleaning during installation of the work and upon completion of the work. Remove from site all excess materials, debris, and equipment. Repair damage resulting from seeding operations.

END OF SECTION 329219

SECTION 329300 - PLANTS

PART 1 - GENERAL

1.1 DESCRIPTION

- A. Provide trees, plants, and ground covers as shown and specified. The work includes:
 - 1. Soil preparation.
 - 2. Trees, plants, and ground covers.
 - 3. Planting mixes.
 - 4. Mulch and planting accessories.

B. Related work:

- 1. Division 31: Earthwork.
- 2. Seeding Schedule on Drawing C-401.

1.2 QUALITY ASSURANCE

- A. Plant names indicated, should comply with "Standardized Plant Names" as adopted by the latest edition of the American Joint Committee of Horticultural Nomenclature. Provide stock true to botanical name. Do not substitute without permission of owner or owners representative.
- B. Comply with sizing and grading standards of the latest edition of "American Standard for Nursery Stock." A plant shall be dimensioned as it stands in its natural position. For plant material grown in fabric-ground containers, the following chart shall determine root mass size in relation to caliper:
 - 1. Fabric-ground Suggested Container Diameter Caliper of Size Plant

10 inches 1 inch 12 inches 1 inch

14 inches - 16 inches 18 inches - 20 inches 22 inches - 24 inches 3 inches - 4 inches

- C. All plants shall be nursery grown under climatic conditions similar to those in the locality of the project.
- D. Stock furnished shall be at least the minimum size indicated. Larger stock is acceptable, at no additional cost to owner. Root systems must meet AAN standards as specified. Plants should not be altered by pruning or other means to meet specifications.

Plants may be inspected and approved at the place of growth, for compliance with specification requirements for quality, size and variety.

1.3 SUBMITTALS

- A. Submit the following material samples, if requested:
 - 1. Mulch -Bulk or Bagged.
 - 2. Decorative Stone or Gravel -Bag or Bulk
- B. Submit the following materials certification, if requested:
 - 1. Topsoil source and pH value.
 - 2. Peat moss, compost, or other organic soil amendments
 - 3. Plant fertilizer.

1.4 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fertilizer materials in original, unopened and undamaged containers showing weight, analysis, and name of manufacturer. Store in manner to prevent wetting and deterioration.
- B. Take all precautions customary in good nursery practice to prepare plants for transport. Workmanship, which fails to meet the highest standards, will be rejected. Spray deciduous plants in foliage with an approved Anti- Desiccant immediately before digging to prevent dehydration. Dig, pack, transport, and handle plants with care to ensure protection against injury.
- C. Cover plants transported on open vehicles with a protective covering to prevent windburn.

1.5 PROJECT CONDITIONS

- A. Work notification: Notify Owner's Representative at least five (5) working days prior to installation of plant material.
- B. Protect existing utilities, paving, and other facilities from damage caused by landscaping operations. Call Miss Utility to mark underground utilities a minimum of 48 hours before digging.
- C. A complete list of plants, including a schedule of sizes, quantities, and other requirements is shown on the drawings. In the event that quantity discrepancies or material omissions occur in the plant materials list, the planting plans shall govern. Payment shall be based on actual installed plant count.

1.6 WARRANTY

- A. Warrant plant material to remain alive and be in a healthy, vigorous condition for a period of one (1) year after acceptance, provided plants are given proper care during this period.
 - 1. Contractor to call for final inspection of plants.

- B. Remove and immediately replace all plants, as determined by the Owner's Representative, to be unsatisfactory during the initial planting installation.
- C. Replace once, in accordance with the drawings and specifications, all plants that are dead or, as determined by Owner's Representative, are in a severely unhealthy condition within warranty period. Replacements to be installed at next best planting season.
- D. Warranty shall not include damage or loss of trees, plants, or ground covers caused by acts of vandalism or negligence on the part of the Owner. Any replacement attributed to these causes must be in addition to the contract amount.

PART 2 - PRODUCTS

2.1 MATERIALS

- A. Plants: Provide plants typical of their species or variety; with normally developed branches and vigorous root systems. Provide only sound, healthy, vigorous plants free from defects, disfiguring knots, sunscald injuries, frost cracks, abrasions of the bark, plant diseases, insect eggs, borers, and all forms of infestation.
 - 1. Dig balled and burlapped plants with firm, natural balls of earth of sufficient diameter and depth as necessary for full recovery of the plant. Provide ball sizes complying with the latest edition of the "American Standard for Nursery Stock." Cracked or mushroomed balls are not acceptable.
 - 2. Container-grown stock shall have grown in a container for sufficient length of time for the root system to have developed to hold its soil together, firm and whole.
 - a. No plants shall be loose in the container.
 - b. Container stock shall not be pot bound.
 - 3. If the use of larger than specified plants is acceptable, increase the spread of roots or root ball in proportion to the size of the plant.
 - 4. The height of the trees, measured from the crown of the roots to the top of the top branch, shall not be less than the minimum size and variety designated in the plant list and according to the AAN Standards for Nursery Stock.
 - 5. Shrubs and small plants shall meet the requirements for spread and/or height indicated in the plant list and be in accordance with AAN standards.

2.2 ACCESSORIES

- A. Topsoil for planting beds: Fertile, friable, natural topsoil without admixture of subsoil material, obtained from a well-drained arable site, reasonably free from clay, lumps, coarse sands, stones, plants, roots, sticks, and other foreign materials, with acidity range of between pH 5.5 to 6.0 and be typical of the area.
 - 1. Identify source location of topsoil proposed for use on the project.
 - 2. Provide topsoil free of substances harmful to the plants, which will be grown in the soil.

- B. Peat Moss: Brown to black in color, weed and seed free granulated raw peat or baled peat, containing not more than 9% mineral on a dry basis.
- C. Organic Matter- Organic matter can be from peat moss, compost, or locally available organic waste. Organic matter should be free from debris, weed seeds, and insects or diseases which may be harmful to the intended planting.

D. Fertilizer:

- 1. Plant fertilizer: Commercial type "A" approved by the Owner's Representative, containing 12% nitrogen, 12% phosphoric acid and 12% potash by weight, 1/4 of nitrogen in the form of nitrates, 1/4 in form of ammonia salt and 1/2 in form of organic nitrogen, or as specified.
- E. Anti-Desiccant: Protective film emulsion providing a protective film over plant surfaces;; permeable to permit transpiration. Mixed and applied in accordance with manufacturer's instructions.
- F. Water: Hoses or other methods of transportation furnished by Contractor. Water to be provided by the Owner at the site.
- G. Stakes for staking: Hardwood, 2 inches x 2 inches (6-8 feet) long (2x4 pine is permissible).
- H. Stakes for guying: Hardwood, 2 inches x 2 inches x 24 inches long.
- I. Guying/staking wire: 12- or 14-gauge galvanized wire.
 - 1. Turnbuckles: Galvanized steel of size and gauge required to provide tensile strength equal to that of the wire. Turnbuckle openings shall be at least 3 inches.
- J. Staking and guying hose: Two-ply, reinforced garden hose not less than 1/2-inch inside diameter. Shall be uniform in color.
- K. Plastic guy material no less than 1/4-inch. Shall be uniform in color and level as applied.
- L. Twine: Two-ply jute material.
- M. Weed control barrier: Rot resistant polypropylene fabric or equivalent, water and air permeable.
- N. Tree Bark Protector 2 foot height; installed at time of planting trees 1-3 inch caliper. Diameter of tree bark protector approximately 4 inch caliper. Used to protect trunk and bark from equipment and deer damage. Remove when tree exceeds 3.5 inch caliper in size. Product supplied by Plantra 1-800-951-3806, info@plantra.com or approved equal.

PART 3 - EXECUTION

3.1 INSPECTION

A. Examine proposed planting areas and conditions before installation. Do not start planting work until unsatisfactory conditions are corrected.

3.2 PREPARATION

A. Time of planting:

- 1. Evergreen material: Plant evergreen materials between September 1 and December 1 or in spring before new growth begins. If Owner requires planting at other times, plants shall be sprayed with anti-desiccant prior to digging operations, weather dependent.
- 2. Deciduous material: Plant deciduous materials in a dormant condition. If deciduous trees are planted in- leaf, they shall be sprayed with an anti-desiccant prior to digging operation.
- B. Planting shall be performed only by experienced workmen familiar with planting procedures under the supervision of a qualified supervisor.
- C. Locate plants as indicated on drawings. If obstructions are encountered that are not shown on the drawings, do not proceed with planting operations until Owner's Representative has selected alternate plant locations.
- D. Excavate circular plant pits with vertical sides, except for plants specifically indicated to be planted in beds. Provide shrub pits at least twice as wide as the root system and 24 inches greater for trees. Depth of pit shall be no greater than the root ball depth. Scarify bottom of the pit. Remove excess excavated materials from the site.
- E. Provide pre-mixed ground cover bed planting mixture for use around the balls and roots of the plants consisting of five (5) parts existing soil to one (l) part peat moss and lb. plant fertilizer for each cubic yard of mixture or equivalent. Bagged bark professional mixes are an equivalent substitute for peat moss.
- F. Provide pre-mixed ground cover bed planting mixture consisting of three (3) parts existing soil to one (l) part peat moss and 1lb. plant fertilizer per cubic yard. Provide beds a minimum of 6 inches deep. Bagged bark professional mixes are an equivalent substitute for peat moss.

3.3 INSTALLATION

A. Set plant material in the planting pit to proper grade and alignment. If Fabric In-ground container material is used, remove fabric bag first. Set plants upright, plum and faced to give the best appearance or relationship to each other or adjacent structure. Set plant material no lower than the finish grade or 2 inches - 3 inches above finished grade. No filling will be permitted

around trunks or stems. Back fill the pit with existing soil or approved top soil or mix. Form a ring of soil around the edge of each planting pit to retain water.

- B. After plants are set, muddle planting soil mixture around bases of balls and fill all voids.
 - 1. Remove all burlap, ropes, and wires from the collar of balls.
- C. Space ground cover plants in accordance with indicated dimensions.
- D. Watering: Water planting thoroughly to pull soils against root ball and settle air pockets. Additional soil may be needed, water again to ensure complete compaction.

E. Mulching:

- 1. Mulch tree and shrub planting pits and shrub beds with required mulching material 2 inches 3 inches deep immediately after planting. After watering, rake mulch to provide a uniform finished surface.
- 2. Mulch ground cover beds with mulch 2 inches deep before planting.
- F. Wrapping, guying, staking:
 - 1. Wrapping should be done only on an as need basis.
 - 2. Staking/Guying
 - a. Stake/guy should only be used when trees are loose or weak stemmed. (See Staking details on the Drawings.)

G. Pruning:

- 1. Remove or cut back broken, damaged and asymmetrical growth of new wood.
- 2. Unless otherwise directed, prune evergreens only to remove broken or damaged branches.

3.4 SUBMITTALS

- A. Submit the following material samples, if requested:
 - 1. Mulch -Bulk or Bagged.
 - 2. Decorative Stone or Gravel -Bag or Bulk
- B. Submit the following materials certification, if requested:
 - 1. Topsoil source and pH value.
 - 2. Peat moss, compost, or other organic soil amendments
 - 3. Plant fertilizer.

3.5 DELIVERY, STORAGE, AND HANDLING

- A. Deliver fertilizer materials in original, unopened and undamaged containers showing weight, analysis, and name of manufacturer. Store in manner to prevent wetting and deterioration.
- B. Take all precautions customary in good nursery practice to prepare plants for transport. Workmanship, which fails to meet the highest standards, will be rejected. Spray deciduous plants in foliage with an approved Anti- Desiccant immediately before digging to prevent dehydration. Dig, pack, transport, and handle plants with care to ensure protection against injury.
- C. Cover plants transported on open vehicles with a protective covering to prevent wind burn.

3.6 PROJECT CONDITIONS

- A. Work notification: Notify Owner's Representative at least five (5) working days prior to installation of plant material.
- B. Protect existing utilities, paving, and other facilities from damage caused by landscaping operations. Call Miss Utility to mark underground utilities a minimum of 48 hours before digging.
- C. A complete list of plants, including a schedule of sizes, quantities, and other requirements is shown on the drawings. In the event that quantity discrepancies or material omissions occur in the plant materials list, the planting plans shall govern. Payment shall be based on actual installed plant count.

3.7 MAINTENANCE

- A. Maintenance of installed and accepted plantings will be performed by the Owner.
- B. Contractor's maintenance shall include pruning, cultivating, weeding, watering, and application of appropriate insecticides and fungicides necessary to maintain plants free of insects and disease until acceptance.
 - 1. Re-set settled plants to proper grade and position. Restore planting saucer and adjacent material and remove dead material.
 - 2. Tighten and repair guy wires and stakes as required, only if originally needed.
 - 3. Correct defective work as soon as possible after deficiencies become apparent and weather and season permit.
 - 4. Water trees, plants and ground cover beds.

3.8 ACCEPTANCE

A. Planted areas will be inspected at completion of installation and accepted subject to compliance with specified materials and installation requirements.

- B. Inspection upon contractors request to determine acceptance of planted areas will be made by the Owner's Representative.
 - 1. Planted areas will be accepted provided all requirements have been complied with and plant materials are alive and in a healthy, vigorous condition.
- C. Sections of the work may be accepted when complete upon agreement of the Owner's Representative and the Contractor.
- D. Upon acceptance, the Owner will assume plant maintenance.

3.9 CLEANING

A. Perform cleaning during installation and upon completion of the work. Remove from site all excess materials, soil, debris, and equipment. Repair damage resulting from planting operations.

END OF SECTION 329300

SECTION 334100 - STORM UTILITY DRAINAGE PIPING

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

A. Drawings and general provisions of the Contract and Division 01 Specification Sections apply to this Section.

1.2 SUMMARY

A. Section Includes:

- 1. Pipe and fittings.
- 2. Nonpressure transition couplings.
- 3. Manholes.
- 4. Catch basins.
- 5. Pipe outlets.

1.3 DELIVERY, STORAGE, AND HANDLING

- A. Do not store plastic pipe, and fittings in direct sunlight.
- B. Protect pipe, pipe fittings, and seals from dirt and damage.
- C. Handle manholes according to manufacturer's written rigging instructions.
- D. Handle catch basins according to manufacturer's written rigging instructions.

PART 2 - PRODUCTS

2.1 CONCRETE PIPE AND FITTINGS

- A. Reinforced-Concrete Sewer Pipe and Fittings: ASTM C 76.
 - 1. Tongue-and-groove ends and gasketed joints with ASTM C 443 rubber gaskets.
 - 2. Class III, Wall B.

2.2 MANHOLES

A. Standard Precast Concrete Manholes:

- 1. Description: ASTM C 478, precast, reinforced concrete, of depth indicated, with provision for sealant joints.
- 2. Diameter: 48 inches minimum unless otherwise indicated.
- 3. Ballast: Increase thickness of precast concrete sections or add concrete to base section as required to prevent flotation.
- 4. Base Section: 6-inch minimum thickness for floor slab and 4-inch minimum thickness for walls and base riser section, and separate base slab or base section with integral floor.
- 5. Riser Sections: 4-inch minimum thickness, and lengths to provide depth indicated.
- 6. Top Section: Eccentric-cone type unless concentric-cone or flat-slab-top type is indicated, and top of cone of size that matches grade rings.
- 7. Joint Sealant: ASTM C 990, bitumen or butyl rubber.
- 8. Resilient Pipe Connectors: ASTM C 923, cast or fitted into manhole walls, for each pipe connection.
- 9. Grade Rings: Reinforced-concrete rings, 6- to 9-inch total thickness, to match diameter of manhole frame and cover, and height as required to adjust manhole frame and cover to indicated elevation and slope.

B. Manhole Frames and Covers:

- 1. Description: Ferrous; 24-inch ID by 7- to 9-inch riser with 4-inch- minimum width flange and 26-inch- diameter cover. Include indented top design with lettering cast into cover, using wording equivalent to "STORM SEWER."
- 2. Material: ASTM A 48/A 48M, Class 35 gray iron unless otherwise indicated.

2.3 CONCRETE

- A. General: Cast-in-place concrete according to ACI 318, ACI 350/350R, and the following:
 - 1. Cement: ASTM C 150, Type II.
 - 2. Fine Aggregate: ASTM C 33, sand.
 - 3. Coarse Aggregate: ASTM C 33, crushed gravel.
 - 4. Water: Potable.
- B. Portland Cement Design Mix: 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

- C. Manhole Channels and Benches: Factory or field formed from concrete. Portland cement design mix, 4000 psi minimum, with 0.45 maximum water/cementitious materials ratio. Include channels and benches in manholes.
 - 1. Channels: Concrete invert, formed to same width as connected piping, with height of vertical sides to three-fourths of pipe diameter. Form curved channels with smooth, uniform radius and slope.
 - a. Invert Slope: 2 percent through manhole.
 - 2. Benches: Concrete, sloped to drain into channel.
 - a. Slope: 4 percent.
- D. Ballast and Pipe Supports: Portland cement design mix, 3000 psi minimum, with 0.58 maximum water/cementitious materials ratio.
 - 1. Reinforcing Fabric: ASTM A 185/A 185M, steel, welded wire fabric, plain.
 - 2. Reinforcing Bars: ASTM A 615/A 615M, Grade 60 (420 MPa) deformed steel.

2.4 CATCH BASINS

A. Shall be VDOT Standard inlets as specified on the Drawings.

2.5 PIPE OUTLETS

A. Pipe outlets shall be VDOT standard as specified on the Drawings.

PART 3 - EXECUTION

3.1 EARTHWORK

A. Excavation, trenching, and backfilling are specified in Division 31 Section "Earth Moving."

3.2 PIPING INSTALLATION

- A. General Locations and Arrangements: Drawing plans and details indicate general location and arrangement of underground storm drainage piping. Location and arrangement of piping layout take into account design considerations. Install piping as indicated, to extent practical. Where specific installation is not indicated, follow piping manufacturer's written instructions.
- B. Install piping beginning at low point, true to grades and alignment indicated with unbroken continuity of invert. Place bell ends of piping facing upstream. Install gaskets, seals, sleeves, and couplings according to manufacturer's written instructions for use of lubricants, cements, and other installation requirements.

- C. Install manholes or inlets for changes in direction unless fittings are indicated. Use fittings for branch connections unless direct tap into existing sewer is indicated.
- D. Install proper size increasers, reducers, and couplings where different sizes or materials of pipes and fittings are connected. Reducing size of piping in direction of flow is prohibited.
- E. Install gravity-flow, nonpressure drainage piping according to the following:
 - 1. Install piping pitched down in direction of flow.
 - 2. Install piping with 36-inch minimum cover.
 - 3. Install reinforced-concrete sewer piping according to ASTM C 1479 and ACPA's "Concrete Pipe Installation Manual."

3.3 PIPE JOINT CONSTRUCTION

- A. Join gravity-flow, nonpressure drainage piping according to the following:
 - 1. Join reinforced-concrete sewer piping according to ACPA's "Concrete Pipe Installation Manual" for rubber-gasketed joints.

3.4 MANHOLE INSTALLATION

- A. General: Install manholes, complete with appurtenances and accessories indicated.
- B. Install precast concrete manhole sections with sealants according to ASTM C 891.
- C. Where specific manhole construction is not indicated, follow manhole manufacturer's written instructions.
- D. Set tops of frames and covers flush with finished surface of manholes that occur in pavements. Set tops 3 inches above finished surface elsewhere unless otherwise indicated.

3.5 CATCH BASIN INSTALLATION

A. Set frames and grates to elevations indicated.

3.6 STORMWATER OUTLET INSTALLATION

- A. Construct inlet head walls, aprons, and sides of reinforced concrete, as indicated.
- B. Construct riprap of broken stone, as indicated.
- C. Install outlets that spill onto grade, anchored with concrete, where indicated.
- D. Install outlets that spill onto grade, with flared end sections that match pipe, where indicated.
- E. Construct energy dissipaters at outlets, as indicated.

3.7 CONCRETE PLACEMENT

A. Place cast-in-place concrete according to ACI 318.

3.8 IDENTIFICATION

- A. Materials and their installation are specified in Division 31 Section "Earth Moving." Arrange for installation of green warning tape directly over piping and at outside edge of underground structures.
 - 1. Use warning tape over ferrous piping.
 - 2. Use detectable warning tape over nonferrous piping and over edges of underground structures.

3.9 FIELD QUALITY CONTROL

- A. Inspect interior of piping to determine whether line displacement or other damage has occurred. Inspect after approximately 24 inches of backfill is in place, and again at completion of Project.
 - 1. Submit separate reports for each system inspection.
 - 2. Defects requiring correction include the following:
 - a. Alignment: Less than full diameter of inside of pipe is visible between structures.
 - b. Damage: Crushed, broken, cracked, or otherwise damaged piping.
 - c. Infiltration: Water leakage into piping.
 - d. Exfiltration: Water leakage from or around piping.
 - 3. Replace defective piping using new materials, and repeat inspections until defects are within allowances specified.
 - 4. Reinspect and repeat procedure until results are satisfactory.

3.10 CLEANING

A. Clean interior of piping of dirt and superfluous materials. Flush with water.

END OF SECTION 334100

LYNCHBURG | RICHMOND | ALEXANDRIA | ATLANTA | wileywilson.com